grammar = r"""
NP: {<DT|JJ|NN.*>+} # ...
"""
Run Code Online (Sandbox Code Playgroud)
我想扩展NP(名词短语)以包含由CC(并列连词:和)或,(逗号)连接的多个NP以捕获名词短语,例如:
我无法将修改后的语法捕获为单个NP:
import nltk
grammar = r"""
NP: {<DT|JJ|NN.*>+(<CC|,>+<NP>)?}
"""
sentence = 'The house and tree'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
结果是:
(S (NP The/DT house/NN) and/CC (NP tree/NN))
Run Code Online (Sandbox Code Playgroud)
我试过将NP移到开头:NP: {(<NP><CC|,>+)?<DT|JJ|NN.*>+}但我得到了相同的结果
(S (NP The/DT house/NN) and/CC (NP tree/NN))
Run Code Online (Sandbox Code Playgroud)
让我们从小处着手并正确捕获 NP(名词短语):
import nltk
grammar = r"""
NP: {<DT|JJ|NN.*>+}
"""
sentence = 'The house and tree'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
[出去]:
(S (NP The/DT house/NN) and/CC (NP tree/NN))
Run Code Online (Sandbox Code Playgroud)
现在让我们试着抓住那个and/CC。只需添加一个更高级别的短语来重用<NP>规则:
grammar = r"""
NP: {<DT|JJ|NN.*>+}
CNP: {<NP><CC><NP>}
"""
sentence = 'The house and tree'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
[出去]:
(S (CNP (NP The/DT house/NN) and/CC (NP tree/NN)))
Run Code Online (Sandbox Code Playgroud)
现在我们捕捉到了NP CC NP短语,让我们花点心思看看它是否捕捉到了逗号:
grammar = r"""
NP: {<DT|JJ|NN.*>+}
CNP: {<NP><CC|,><NP>}
"""
sentence = 'The house, the bear and tree'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
现在我们看到它仅限于捕获第一个左有界NP CC|, NP并单独留下最后一个 NP。
由于我们知道连接短语在英语中有左有界连词和右有界NP,即CC|, NP,例如and the tree,我们看到CC|, NP模式是重复的,因此我们可以将其用作中间表示。
grammar = r"""
NP: {<DT|JJ|NN.*>+}
XNP: {<CC|,><NP>}
CNP: {<NP><XNP>+}
"""
sentence = 'The house, the bear and tree'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
[出去]:
(S
(CNP
(NP The/DT house/NN)
(XNP ,/, (NP the/DT bear/NN))
(XNP and/CC (NP tree/NN))))
Run Code Online (Sandbox Code Playgroud)
最终,CNP(Conjunctive NPs)语法捕获了英语中的链式名词短语连词,即使是复杂的,例如
import nltk
grammar = r"""
NP: {<DT|JJ|NN.*>+}
XNP: {<CC|,><NP>}
CNP: {<NP><XNP>+}
"""
sentence = 'The house, the bear, the green house and a tree went to the park or the river.'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
print(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
[出去]:
(S
(CNP
(NP The/DT house/NN)
(XNP ,/, (NP the/DT bear/NN))
(XNP ,/, (NP the/DT green/JJ house/NN))
(XNP and/CC (NP a/DT tree/JJ)))
went/VBD
to/TO
(CNP (NP the/DT park/NN) (XNP or/CC (NP the/DT river/NN)))
./.)
Run Code Online (Sandbox Code Playgroud)
如果您只是对从如何遍历 NLTK 树对象中提取名词短语感兴趣?:
noun_phrases = []
def traverse_tree(tree):
if tree.label() == 'CNP':
noun_phrases.append(' '.join([token for token, tag in tree.leaves()]))
for subtree in tree:
if type(subtree) == nltk.tree.Tree:
traverse_tree(subtree)
return noun_phrases
sentence = 'The house, the bear, the green house and a tree went to the park or the river.'
chunkParser = nltk.RegexpParser(grammar)
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
traverse_tree(chunkParser.parse(tagged))
Run Code Online (Sandbox Code Playgroud)
[出去]:
['The house , the bear , the green house and a tree', 'the park or the river']
Run Code Online (Sandbox Code Playgroud)
另外,请参阅Python (NLTK) - 提取名词短语的更有效方法?