我正在努力实现lpSolve解决方案,以优化假设的日常幻想棒球问题。我在应用最后一个约束时遇到了麻烦:
举例来说,假设您有一个包含1000个球员的数据框,其中包含积分,成本,位置和球队,并且您正在尝试最大化平均积分:
library(tidyverse)
library(lpSolve)
set.seed(123)
df <- data_frame(avg_points = sample(5:45,1000, replace = T),
cost = sample(3:45,1000, replace = T),
position = sample(c("P","C","1B","2B","3B","SS","OF"),1000, replace = T),
team = sample(LETTERS,1000, replace = T)) %>% mutate(id = row_number())
head(df)
# A tibble: 6 x 5
# avg_points cost position team id
# <int> <int> <chr> <chr> <int>
#1 17 13 2B Y 1
#2 39 45 1B P 2
#3 29 33 1B C 3
#4 38 31 2B V 4
#5 17 13 P A 5
#6 10 6 SS V 6
Run Code Online (Sandbox Code Playgroud)
我已经使用以下代码实现了前3个约束,但是我在弄清楚如何实现名册上最少团队人数方面遇到了麻烦。我想我需要向模型添加其他变量,但是我不确定该怎么做。
#set the objective function (what we want to maximize)
obj <- df$avg_points
# set the constraint rows.
con <- rbind(t(model.matrix(~ position + 0,df)), cost = df$cost, t(model.matrix(~ team + 0, df)) )
#set the constraint values
rhs <- c(1,1,1,1,3,2,1, # 1. #exactly 3 outfielders 2 pitchers and 1 of everything else
200, # 2. at a cost less than 200
rep(6,26) # 3. max number from any team is 6
)
#set the direction of the constraints
dir <- c("=","=","=","=","=","=","=","<=",rep("<=",26))
result <- lp("max",obj,con,dir,rhs,all.bin = TRUE)
Run Code Online (Sandbox Code Playgroud)
这可能是您的问题的解决方案。
这是我使用的数据(与您的数据相同):
library(tidyverse)
library(lpSolve)
N <- 1000
set.seed(123)
df <- tibble(avg_points = sample(5:45,N, replace = T),
cost = sample(3:45,N, replace = T),
position = sample(c("P","C","1B","2B","3B","SS","OF"),N, replace = T),
team = sample(LETTERS,N, replace = T)) %>%
mutate(id = row_number())
Run Code Online (Sandbox Code Playgroud)
您想要找到x1...xn最大化以下目标函数的方法:
x1 * average_points1 + x2 * average_points1 + ... + xn * average_pointsn
Run Code Online (Sandbox Code Playgroud)
通过lpSolve的工作方式,您将需要用提供的向量将每一个表示LHS为总和
x1...xn。
由于您无法使用当前变量来表示团队数量,因此可以引入新的团队(我将其称为y1..yn_teams和z1..zn_teams):
# number of teams:
n_teams = length(unique(df$team))
Run Code Online (Sandbox Code Playgroud)
新的目标函数(ys和zs不会影响整体目标功能,因为常数设置为0):
obj <- c(df$avg_points, rep(0, 2 * n_teams))
Run Code Online (Sandbox Code Playgroud)
)
前三个约束是相同的,但是增加了y和的常量z:
c1 <- t(model.matrix(~ position + 0,df))
c1 <- cbind(c1,
matrix(0, ncol = 2 * n_teams, nrow = nrow(c1)))
c2 = df$cost
c2 <- c(c2, rep(0, 2 * n_teams))
c3 = t(model.matrix(~ team + 0, df))
c3 <- cbind(c3, matrix(0, ncol = 2 * n_teams, nrow = nrow(c3)))
Run Code Online (Sandbox Code Playgroud)
由于您希望至少拥有3个球队,因此您将首先使用它y来计算每个球队的球员人数:
此约束计算每个团队的球员人数。您对选择的球队的所有球员进行汇总,然后减去y每个球队的相应变量。该值应等于0。(diag()创建单位矩阵,我们现在不必担心z):
# should be x1...xn - y1...n = 0
c4_1 <- cbind(t(model.matrix(~team + 0, df)), # x
-diag(n_teams), # y
matrix(0, ncol = n_teams, nrow = n_teams) # z
) # == 0
Run Code Online (Sandbox Code Playgroud)
由于每个人y现在都是一个团队中的球员人数,因此您现在可以确定z是具有此约束的二进制数:
c4_2 <- cbind(t(model.matrix(~ team + 0, df)), # x1+...+xn ==
-diag(n_teams), # - (y1+...+yn )
diag(n_teams) # z binary
) # <= 1
Run Code Online (Sandbox Code Playgroud)
这是确保至少选择3个团队的约束:
c4_3 <- c(rep(0, nrow(df) + n_teams), # x and y
rep(1, n_teams) # z >= 3
)
Run Code Online (Sandbox Code Playgroud)
您需要确保
您可以使用big-M方法创建约束,即:
或者,在更lpSolve友好的版本中:
在这种情况下,您可以将其6用作的值M,因为它是任何一个y都可以取的最大值:
c4_4 <- cbind(matrix(0, nrow = n_teams, ncol = nrow(df)),
diag(n_teams),
-diag(n_teams) * 6)
Run Code Online (Sandbox Code Playgroud)
添加此约束以确保所有x都是二进制的:
#all x binary
c5 <- cbind(diag(nrow(df)), # x
matrix(0, ncol = 2 * n_teams, nrow = nrow(df)) # y + z
)
Run Code Online (Sandbox Code Playgroud)
创建新的约束矩阵
con <- rbind(c1,
c2,
c3,
c4_1,
c4_2,
c4_3,
c4_4,
c5)
#set the constraint values
rhs <- c(1,1,1,1,3,2,1, # 1. #exactly 3 outfielders 2 pitchers and 1 of everything else
200, # 2. at a cost less than 200
rep(6, n_teams), # 3. max number from any team is 6
rep(0, n_teams), # c4_1
rep(1, n_teams), # c4_2
3, # c4_3,
rep(0, n_teams), #c4_4
rep(1, nrow(df))# c5 binary
)
#set the direction of the constraints
dir <- c(rep("==", 7), # c1
"<=", # c2
rep("<=", n_teams), # c3
rep('==', n_teams), # c4_1
rep('<=', n_teams), # c4_2
'>=', # c4_3
rep('<=', n_teams), # c4_4
rep('<=', nrow(df)) # c5
)
Run Code Online (Sandbox Code Playgroud)
问题几乎是相同的,但我使用的all.int不是all.bin要确保对团队中的球员有效:
result <- lp("max",obj,con,dir,rhs,all.int = TRUE)
Success: the objective function is 450
roster <- df[result$solution[1:nrow(df)] == 1, ]
roster
# A tibble: 10 x 5
avg_points cost position team id
<int> <int> <chr> <chr> <int>
1 45 19 C I 24
2 45 5 P X 126
3 45 25 OF N 139
4 45 22 3B J 193
5 45 24 2B B 327
6 45 25 OF P 340
7 45 23 P Q 356
8 45 13 OF N 400
9 45 13 SS L 401
10 45 45 1B G 614
Run Code Online (Sandbox Code Playgroud)
如果您将数据更改为
N <- 1000
set.seed(123)
df <- tibble(avg_points = sample(5:45,N, replace = T),
cost = sample(3:45,N, replace = T),
position = sample(c("P","C","1B","2B","3B","SS","OF"),N, replace = T),
team = sample(c("A", "B"),N, replace = T)) %>%
mutate(id = row_number())
Run Code Online (Sandbox Code Playgroud)
现在这将是不可行的,因为数据中的团队数少于3。
您可以检查它现在是否可以工作:
sort(unique(df$team))[result$solution[1027:1052]==1]
[1] "B" "E" "I" "J" "N" "P" "Q" "X"
sort(unique(roster$team))
[1] "B" "E" "I" "J" "N" "P" "Q" "X"
Run Code Online (Sandbox Code Playgroud)