我正在研究业务逻辑,我需要对BigDecimal变量进行除法和乘法以产生业务结果,但是我面临着保持准确性的问题。
实际的业务我不能放在这里,所以我创建了一个示例程序并包含在此处。我只需要使用BigDecimal,所以我对此非常严格,但是我愿意使用任何比例尺,模式或任何有助于我获得最大精度的东西。
总是欢迎提出建议。
样例代码
public class Test {
public static void main(String[] args) {
BigDecimal hoursInADay = new BigDecimal("24");
BigDecimal fraction = BigDecimal.ONE.divide(hoursInADay, 3,
RoundingMode.HALF_UP);
BigDecimal count = BigDecimal.ZERO;
for (int i = 1; i <= 24; i++) {
count = count.add(fraction);
}
if (BigDecimal.ONE.equals(count)) {
// accuracy level 100%
}
}
}
Run Code Online (Sandbox Code Playgroud)
只是一个实验(并且为了好玩),我尝试实现这个Fraction类,它包装BigDecimal但避免除法,直到需要最终结果。
该方法的实现基于:
a/b + c/d = (ad + bc)/bd(a/b) * (c/d) = ac/bd(a/b)/(c/d) = ad/bc不使用它是因为BigDecimal精度不够,但因为过早除法在非终止值的情况下必然会导致舍入错误。
代码:
class Fraction {
private final BigDecimal numerator;
private final BigDecimal denominator;
public Fraction(BigDecimal numerator, BigDecimal denumerator) {
this.numerator = numerator;
this.denominator = denumerator;
}
public static final Fraction ZERO = new Fraction(BigDecimal.ZERO,
BigDecimal.ONE);
public static final Fraction ONE = new Fraction(BigDecimal.ONE,
BigDecimal.ONE);
public static Fraction of(BigDecimal numerator) {
return new Fraction(numerator, BigDecimal.ONE);
}
public static Fraction of(BigDecimal numerator, BigDecimal denominator) {
return new Fraction(numerator, denominator);
}
public Fraction add(Fraction other) {
return Fraction.of(other.denominator.multiply(this.numerator)
.add(other.numerator.multiply(this.denominator)),
this.denominator.multiply(other.denominator));
}
public Fraction multiply(Fraction other) {
return new Fraction(this.numerator.multiply(other.numerator),
this.denominator.multiply(other.denominator));
}
public Fraction divide(Fraction other) {
return new Fraction(this.numerator.multiply(other.denominator),
this.denominator.multiply(other.numerator));
}
public BigDecimal value() {
try {
return this.numerator.divide(this.denominator);
} catch (ArithmeticException ae) {
return this.numerator.divide(this.denominator, 6,
RoundingMode.HALF_UP);
}
}
@Override
public String toString() {
return String.format("%s/%s", this.numerator, this.denominator);
}
}
Run Code Online (Sandbox Code Playgroud)
并用它来执行您的原始计算:
public static void main(String[] args) {
Fraction twentyFour = Fraction.of(BigDecimal.valueOf(24));
Fraction fraction = Fraction.ONE.divide(twentyFour);
System.out.println("Fraction = " + fraction);
Fraction count = new Fraction(BigDecimal.ZERO, BigDecimal.ONE);
for (int i = 1; i <= 24; i++) {
count = count.add(fraction);
}
if (BigDecimal.ONE.equals(count.value())) {
System.out.println("100%");
} else {
System.out.println(count);
}
}
Run Code Online (Sandbox Code Playgroud)
输出:
Fraction = 1/24
100%
Run Code Online (Sandbox Code Playgroud)
值得注意的是,这根本没有经过优化。例如,分数没有被简化(1/24 + 1/24将被存储为48/576而不是1/12,并且可能具有不可忽略的存储和计算成本)