如何在MATLAB中更改浮点运算的舍入模式?

HYF*_*HYF 7 floating-point matlab rounding

我想更改MATLAB中浮点运算的舍入模式。根据IEEE 754-2008,有五种舍入策略:

  • 四舍五入到最接近的关系
  • 四舍五入到最接近,领带从零开始
  • 向零舍入
  • 向上舍入(向正无穷大)
  • 向下舍入(向负无穷大)

MATLAB是否支持这5种策略?如何在MATLAB中更改浮点运算的舍入模式?

And*_*nke 7

回答

的种类。有一个未公开的feature('setround')函数调用,您可以使用它来获取或设置 Matlab 使用的舍入模式。

所以,它可以做到,但你不应该这样做。:)

警告:这是一个未记录的、不受支持的功能!使用后果自负!

feature('setround')支持 5 种 IEEE-754 舍入模式中的 4 种:只有一种“最近”模式,我不知道它是“与偶数相关”还是“与零相关”。

支持的模式:

  • feature('setround') – 获取当前舍入模式
  • feature('setround', 0.5) – 向最近的舍入(不知道它是否与偶数或远离零有关)
  • feature('setround', Inf) – 向上取整(朝向 +Inf)
  • feature('setround', 0) – 向零舍入
  • feature('setround', -Inf) – 向下舍入(朝向 -Inf)

测试注意事项:IEEE-754 舍入模式不影响round()及其相关性。相反,它控制着算术运算在浮点精度限制下的行为方式。

示范

%ROUNDINGEXAMPLE Demonstrates IEEE-754 Rounding Mode control
%
% This uses a completely undocumented and unsupported feature!
% Not for production use!

%% Setup
clear; clc

n = 2000;
X = ones(n)*1E-30; % matrix with n^2 elements
defaultRoundingMode = feature('setround'); % store default rounding mode

%%
feature('setround',0.5);
r1 = prettyPrint('Nearest', sum(X(:)));
%{
  sign   exponent                       mantissa
     0 01110110001 0011010101111100001010011001101001110101010000011110
     | \_________/ \__________________________________________________/
     |      |             ______________________|___________________________
     |      |            /                                                  \
(-1)^0 2^( 945 - 1023) 1.0011010101111100001010011001101001110101010000011110 = 4e-24
%}

%%
feature('setround',-Inf);
r2 = prettyPrint('To -Infinity', sum(X(:)));
%{
  sign   exponent                       mantissa
     0 01110110001 0011010101111100001010011001101001011100000111000110
     | \_________/ \__________________________________________________/
     |      |             ______________________|___________________________
     |      |            /                                                  \
(-1)^0 2^( 945 - 1023) 1.0011010101111100001010011001101001011100000111000110 = 4e-24
%}

%%
feature('setround',Inf);
r3 = prettyPrint('To Infinity', sum(X(:)));
%{
  sign   exponent                       mantissa
     0 01110110001 0011010101111100001010011001101010100011101100100001
     | \_________/ \__________________________________________________/
     |      |             ______________________|___________________________
     |      |            /                                                  \
(-1)^0 2^( 945 - 1023) 1.0011010101111100001010011001101010100011101100100001 = 4e-24
%}

%%
feature('setround',0);
r4 = prettyPrint('To zero', sum(X(:)));
%{
  sign   exponent                       mantissa
     0 01110110001 0011010101111100001010011001101001011100000111000110
     | \_________/ \__________________________________________________/
     |      |             ______________________|___________________________
     |      |            /                                                  \
(-1)^0 2^( 945 - 1023) 1.0011010101111100001010011001101001011100000111000110 = 4e-24
%}

%%
feature('setround',defaultRoundingMode);
r5 = prettyPrint('No accumulated roundoff error', 4e-24);
%{
  sign   exponent                       mantissa
     0 01110110001 0011010101111100001010011001101010001000111010100111
     | \_________/ \__________________________________________________/
     |      |             ______________________|___________________________
     |      |            /                                                  \
(-1)^0 2^( 945 - 1023) 1.0011010101111100001010011001101010001000111010100111 = 4e-24
%}

%% Helper function
function r = prettyPrint(s, r)
    fprintf('%s:\n%65.60f\n\n', s, r); 
end
Run Code Online (Sandbox Code Playgroud)

我得到:

Nearest:
   0.000000000000000000000003999999999966490758963870373537264729

To -Infinity:
   0.000000000000000000000003999999999789077070014108839608005726

To Infinity:
   0.000000000000000000000004000000000118618095059505975310731249

To zero:
   0.000000000000000000000003999999999789077070014108839608005726

No accumulated roundoff error:
   0.000000000000000000000003999999999999999694801998206811298525
Run Code Online (Sandbox Code Playgroud)

致谢

感谢 MathWorks 技术支持的 Ryan Klots 让我直截了当并提供了很好的演示代码!

  • 嗨,我发现 MATLAB 使用“远离零的圆形关系”。然而,它不支持```round ties to even```。因此,MATLAB 支持 IEEE 754-2008 中描述的 5 种舍入模式中的 4 种。在 MATLAB 中运行 ```int32(single(X.5))``` 将返回 X + 1。```int32(single(0.5))``` 返回 1,而 ```int32(single(1.5)) )``` 返回 2。我认为原因是 MATLAB 中的大多数后端计算都是用 C 和 C++ 编写的。目前,C 和 C++ 只支持 4 种舍入模式,除了 ```round ties to even```。所以MATLAB只是做同样的事情。 (2认同)