Fel*_*nga 7 r time-series training-data r-caret
我有一个如下所示的数据集
set.seed(503)
foo <- data.table(group = rep(LETTERS[1:6], 150),
y = rnorm(n = 6 * 150, mean = 5, sd = 2),
x1 = rnorm(n = 6 * 150, mean = 5, sd = 10),
x2 = rnorm(n = 6 * 150, mean = 25, sd = 10),
x3 = rnorm(n = 6 * 150, mean = 50, sd = 10),
x4 = rnorm(n = 6 * 150, mean = 0.5, sd = 10),
x5 = sample(c(1, 0), size = 6 * 150, replace = T))
foo[, period := 1:.N, by = group]
Run Code Online (Sandbox Code Playgroud)
问题:我想y提前一步预测,对于每个group,使用变量x1, ..., x5
我想运行几个模型caret来决定我将使用哪个。
截至目前,我正在使用时间片循环运行它
window.length <- 115
timecontrol <- trainControl(method = 'timeslice',
initialWindow = window.length,
horizon = 1,
selectionFunction = "best",
fixedWindow = TRUE,
savePredictions = 'final')
model_list <- list()
for(g in unique(foo$group)){
for(model in c("xgbTree", "earth", "cubist")){
dat <- foo[group == g][, c('group', 'period') := NULL]
model_list[[g]][[model]] <- train(y ~ . - 1,
data = dat,
method = model,
trControl = timecontrol)
}
}
Run Code Online (Sandbox Code Playgroud)
但是,我想同时运行所有组,使用虚拟变量来识别每个组,例如
dat <- cbind(foo, model.matrix(~ group- 1, foo))
y x1 x2 x3 x4 x5 period groupA groupB groupC groupD groupE groupF
1: 5.710250 11.9615460 22.62916 31.04790 -4.821331e-04 1 1 1 0 0 0 0 0
2: 3.442213 8.6558983 32.41881 45.70801 3.255423e-01 1 1 0 1 0 0 0 0
3: 3.485286 7.7295448 21.99022 56.42133 8.668391e+00 1 1 0 0 1 0 0 0
4: 9.659601 0.9166456 30.34609 55.72661 -7.666063e+00 1 1 0 0 0 1 0 0
5: 5.567950 3.0306864 22.07813 52.21099 5.377153e-01 1 1 0 0 0 0 1 0
Run Code Online (Sandbox Code Playgroud)
但仍然使用timeslice.
有没有办法在 中声明time变量trainControl,所以我的one step ahead预测在这种情况下,每轮使用 6 个以上的观察值并删除前 6 个观察值?
我可以通过对数据进行排序并弄乱horizon参数(给定n组,按时间变量排序和 put horizon = n)来做到这一点,但是如果组数发生变化,这必须改变。并且initial.window必须是time * n_groups
timecontrol <- trainControl(method = 'timeslice',
initialWindow = window.length * length(unique(foo$group)),
horizon = length(unique(foo$group)),
selectionFunction = "best",
fixedWindow = TRUE,
savePredictions = 'final')
Run Code Online (Sandbox Code Playgroud)
有没有别的办法?
我认为您正在寻找的答案实际上非常简单。您可以使用skip参数trainControl()在每个训练/测试集之后跳过所需数量的观察。这样,您只需预测每个组周期一次,同一周期永远不会在训练组和测试组之间分割,并且不存在信息泄漏。
使用您提供的示例,如果您设置skip = 6和horizon = 6(组数)和initialWindow = 115,则第一个测试集将包括周期 116 的所有组,下一个测试集将包括周期 117 的所有组,依此类推。
library(caret)
library(tidyverse)
set.seed(503)
foo <- tibble(group = rep(LETTERS[1:6], 150),
y = rnorm(n = 6 * 150, mean = 5, sd = 2),
x1 = rnorm(n = 6 * 150, mean = 5, sd = 10),
x2 = rnorm(n = 6 * 150, mean = 25, sd = 10),
x3 = rnorm(n = 6 * 150, mean = 50, sd = 10),
x4 = rnorm(n = 6 * 150, mean = 0.5, sd = 10),
x5 = sample(c(1, 0), size = 6 * 150, replace = T)) %>%
group_by(group) %>%
mutate(period = row_number()) %>%
ungroup()
dat <- cbind(foo, model.matrix(~ group- 1, foo)) %>%
select(-group)
window.length <- 115
timecontrol <- trainControl(
method = 'timeslice',
initialWindow = window.length * length(unique(foo$group)),
horizon = length(unique(foo$group)),
skip = length(unique(foo$group)),
selectionFunction = "best",
fixedWindow = TRUE,
savePredictions = 'final'
)
model_names <- c("xgbTree", "earth", "cubist")
fits <- map(model_names,
~ train(
y ~ . - 1,
data = dat,
method = .x,
trControl = timecontrol
)) %>%
set_names(model_names)
Run Code Online (Sandbox Code Playgroud)