san*_*san 52 python numpy multiprocessing
我看到的那段代码看起来像这样:
glbl_array = # a 3 Gb array
def my_func( args, def_param = glbl_array):
#do stuff on args and def_param
if __name__ == '__main__':
pool = Pool(processes=4)
pool.map(my_func, range(1000))
Run Code Online (Sandbox Code Playgroud)
有没有办法确保(或鼓励)不同的进程没有获得glbl_array的副本但共享它.如果没有办法停止复制,我将使用memmapped数组,但我的访问模式不是很规律,所以我希望memmapped数组更慢.以上似乎是第一个尝试的事情.这是在Linux上.我只是想从Stackoverflow获得一些建议,并且不想惹恼系统管理员.你认为它会帮助,如果第二个参数是像一个真正的不可变对象glbl_array.tostring().
pv.*_*pv. 108
您可以multiprocessing非常轻松地使用与Numpy一起使用的共享内存:
import multiprocessing
import ctypes
import numpy as np
shared_array_base = multiprocessing.Array(ctypes.c_double, 10*10)
shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
shared_array = shared_array.reshape(10, 10)
#-- edited 2015-05-01: the assert check below checks the wrong thing
# with recent versions of Numpy/multiprocessing. That no copy is made
# is indicated by the fact that the program prints the output shown below.
## No copy was made
##assert shared_array.base.base is shared_array_base.get_obj()
# Parallel processing
def my_func(i, def_param=shared_array):
shared_array[i,:] = i
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=4)
pool.map(my_func, range(10))
print shared_arrayRun Code Online (Sandbox Code Playgroud)
打印
Run Code Online (Sandbox Code Playgroud)[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
[ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
[ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
[ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
[ 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]
[ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]
[ 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]]
However, Linux has copy-on-write semantics on fork(),即使没有使用multiprocessing.Array,除非写入数据,否则不会复制数据.
对于那些坚持使用不支持的 Windows fork()(除非使用 CygWin)的人,pv 的答案不起作用。全局变量不可用于子进程。
相反,您必须在Pool/的初始化过程中传递共享内存Process,如下所示:
#! /usr/bin/python
import time
from multiprocessing import Process, Queue, Array
def f(q,a):
m = q.get()
print m
print a[0], a[1], a[2]
m = q.get()
print m
print a[0], a[1], a[2]
if __name__ == '__main__':
a = Array('B', (1, 2, 3), lock=False)
q = Queue()
p = Process(target=f, args=(q,a))
p.start()
q.put([1, 2, 3])
time.sleep(1)
a[0:3] = (4, 5, 6)
q.put([4, 5, 6])
p.join()
Run Code Online (Sandbox Code Playgroud)
(它不是麻木的,也不是好的代码,但它说明了这一点;-)
小智 7
以下代码可在Win7和Mac上运行(也许在Linux上,但未经测试)。
import multiprocessing
import ctypes
import numpy as np
#-- edited 2015-05-01: the assert check below checks the wrong thing
# with recent versions of Numpy/multiprocessing. That no copy is made
# is indicated by the fact that the program prints the output shown below.
## No copy was made
##assert shared_array.base.base is shared_array_base.get_obj()
shared_array = None
def init(shared_array_base):
global shared_array
shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
shared_array = shared_array.reshape(10, 10)
# Parallel processing
def my_func(i):
shared_array[i, :] = i
if __name__ == '__main__':
shared_array_base = multiprocessing.Array(ctypes.c_double, 10*10)
pool = multiprocessing.Pool(processes=4, initializer=init, initargs=(shared_array_base,))
pool.map(my_func, range(10))
shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
shared_array = shared_array.reshape(10, 10)
print shared_array
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
35014 次 |
| 最近记录: |