rad*_*dix 4 python classification machine-learning knn scikit-learn
我有两个变量 X 和 Y。
X 的结构(即 np.array):
[[26777 24918 26821 ... -1 -1 -1]
[26777 26831 26832 ... -1 -1 -1]
[26777 24918 26821 ... -1 -1 -1]
...
[26811 26832 26813 ... -1 -1 -1]
[26830 26831 26832 ... -1 -1 -1]
[26830 26831 26832 ... -1 -1 -1]]
Run Code Online (Sandbox Code Playgroud)
Y的结构:
[[1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [25197, 26777, 26781], [25197, 26777, 26781], [25197, 26777, 26781], [26764, 25803, 26781], [26764, 25803, 26781], [25197, 26777, 26781], [25197, 26777, 26781], [1252, 26777, 16172], [1252, 26777, 16172]]
Run Code Online (Sandbox Code Playgroud)
Y 中的数组,例如 [1252, 26777, 26831] 是三个独立的特征。
我正在使用 scikit learn 模块中的 Knn 分类器
classifier = KNeighborsClassifier(n_neighbors=3)
classifier.fit(X,Y)
predictions = classifier.predict(X)
print(accuracy_score(Y,predictions))
Run Code Online (Sandbox Code Playgroud)
但我收到一条错误消息:
ValueError:不支持多类多输出
我猜不支持“Y”的结构,我需要进行哪些更改才能执行程序?
输入 :
Deluxe Single room with sea view
Run Code Online (Sandbox Code Playgroud)
预期输出:
c_class = Deluxe
c_occ = single
c_view = sea
Run Code Online (Sandbox Code Playgroud)
正如错误中提到的,KNN
不支持多输出回归/分类。
对于您的问题,您需要MultiOutputClassifier()
.
from sklearn.multioutput import MultiOutputClassifier
knn = KNeighborsClassifier(n_neighbors=3)
classifier = MultiOutputClassifier(knn, n_jobs=-1)
classifier.fit(X,Y)
Run Code Online (Sandbox Code Playgroud)
工作示例:
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> Y = [[124323,1234132,1234],[124323,4132,14],[1,4132,1234],[1,4132,14]]
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> classifier = MultiOutputClassifier(knn, n_jobs=-1)
>>> classifier.fit(X,Y)
>>> predictions = classifier.predict(X)
array([[124323, 4132, 14],
[124323, 4132, 14],
[ 1, 4132, 1234],
[124323, 4132, 14]])
>>> classifier.score(X,np.array(Y))
0.5
>>> test_data = ['I want to test this']
>>> classifier.predict(vectorizer.transform(test_data))
array([[124323, 4132, 14]])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
26643 次 |
最近记录: |