vvz*_*vzh 5 python deep-learning tensorflow
我试图构建一个嵌套循环,用于创建一个二维零矩阵来解决 LCS 问题(动态规划)。这稍后用于计算 Rouge-L 分数(输入是张量,而不是字符串),但它总是出错ValueError: The two structures don't have the same nested structure.
我查了一些类似的问题并修改了一些代码,但它仍然不起作用(我放在这里的代码是最终代码):
# the origin code is below, in which sub and string are both string(type), len_sub and len_string are both int:
lengths = [[0 for i in range(0,len_sub+1)] for j in range(0,len_string+1)]
# but in the new code that I need, the sub and string are both tensor, so I code like this:
len_string = tf.shape(string)[0]
len_sub = tf.shape(sub)[0]
def _add_zeros(i,inner):
inner.append(0)
return i+1, inner
def _add_inners(j, lengths):
i=0
inner = []
_, inner = tf.while_loop(
cond=lambda i,*_: i<=len_sub,
body=_add_zeros,
loop_vars=[i,inner],
shape_invariants=[0,len(inner)])
lengths.append(inner)
return j+1, lengths
lengths = []
j = 0
_, lengths = tf.while_loop(
cond=lambda j,*_: j<=len_string,
body=_add_inners,
loop_vars=[j,lengths],
shape_invariants=[0,len(lengths)])
Run Code Online (Sandbox Code Playgroud)
ValueError: The two structures don't have the same nested structure.
First structure: type=list str=[0, []]
Second structure: type=list str=[0, 0]
More specifically: Substructure "type=list str=[]" is a sequence, while substructure "type=int str=0" is not
Entire first structure:
[., []]
Entire second structure:
[., .]
Run Code Online (Sandbox Code Playgroud)
我不知道为什么会出错。如果您能提供帮助,我将不胜感激。
嗨,基本上,错误消息所说的是,您的返回值是一个列表,而它期望它是一个数字,这是有道理的,因为您已将 shape_invariants 定义为整数,[0, len(lengths)]因此第二个结构定义为[.,.]第一个结构结构是一个数字和一个列表[., []],当您传递长度时,这再次有意义。
TLDR:要么更改为shape_invariants=[0,len(lengths)]),shape_invariants=[0,lengths])要么更改loop_vars=[j,lengths]为loop_vars=[j,len(lengths)],
| 归档时间: |
|
| 查看次数: |
2572 次 |
| 最近记录: |