Jes*_*erg 3 r ggplot2 geom-hline
昨天和今天在网上搜索后,我获得图例工作的唯一方法是遵循“Brian Diggs”在这篇文章中的解决方案: 将图例添加到 ggplot2 线图
这给了我以下代码:
library(ggplot2)
ggplot()+
geom_line(data=myDf, aes(x=count, y=mean, color="TrueMean"))+
geom_hline(yintercept = myTrueMean, color="SampleMean")+
scale_colour_manual("",breaks=c("SampleMean", "TrueMean"),values=c("red","blue"))+
labs(title = "Plot showing convergens of Mean", x="Index", y="Mean")+
theme_minimal()
Run Code Online (Sandbox Code Playgroud)
如果我删除 的颜色,一切都会正常,但是如果我在不是实际颜色hline的颜色中添加一个值(例如),我会得到一个错误,它不是颜色(仅适用于)。添加一个像传奇这样常见的东西怎么会成为一个大问题呢?还有更简单的方法吗?hline"SampleMean"hline
创建原始数据:
#Initial variables
myAlpha=2
myBeta=2
successes=14
n=20
fails=n-successes
#Posterior values
postAlpha=myAlpha+successes
postBeta=myBeta+fails
#Calculating the mean and SD
myTrueMean=(myAlpha+successes)/(myAlpha+successes+myBeta+fails)
myTrueSD=sqrt(((myAlpha+successes)*(myBeta+fails))/((myAlpha+successes+myBeta+fails)^2*(myAlpha+successes+myBeta+fails+1)))
#Simulate the data
simulateBeta=function(n,tmpAlpha,tmpBeta){
tmpValues=rbeta(n, tmpAlpha, tmpBeta)
tmpMean=mean(tmpValues)
tmpSD=sd(tmpValues)
returnVector=c(count=n, mean=tmpMean, sd=tmpSD)
return(returnVector)
}
#Make a df for the data
myDf=data.frame(t(sapply(2:10000, simulateBeta, postAlpha, postBeta)))
Run Code Online (Sandbox Code Playgroud)
给定的解决方案适用于大多数情况,但不适用于geom_hline( vline)。对于它们,您通常不必使用aes,但是当您需要生成图例时,您必须将它们包装在aes:
library(ggplot2)
ggplot() +
geom_line(aes(count, mean, color = "TrueMean"), myDf) +
geom_hline(aes(yintercept = myTrueMean, color = "SampleMean")) +
scale_colour_manual(values = c("red", "blue")) +
labs(title = "Plot showing convergens of Mean",
x = "Index",
y = "Mean",
color = NULL) +
theme_minimal()
Run Code Online (Sandbox Code Playgroud)
查看可用于geom_point更好可视化的原始数据(还添加了一些主题更改):
ggplot() +
geom_point(aes(count, mean, color = "Observed"), myDf,
alpha = 0.3, size = 0.7) +
geom_hline(aes(yintercept = myTrueMean, color = "Expected"),
linetype = 2, size = 0.5) +
scale_colour_manual(values = c("blue", "red")) +
labs(title = "Plot showing convergens of Mean",
x = "Index",
y = "Mean",
color = "Mean type") +
theme_minimal() +
guides(color = guide_legend(override.aes = list(
linetype = 0, size = 4, shape = 15, alpha = 1))
)
Run Code Online (Sandbox Code Playgroud)