带有-gc true的Java 12与Java 8上流API的神秘微基准测试结果

Ser*_*rge 55 java benchmarking java-stream jmh java-12

作为我研究在流中使用复杂过滤器或多个过滤器之间区别的一部分,我注意到Java 12的性能比Java 8慢。

这些奇怪的结果有什么解释吗?我在这里想念什么吗?

组态:

  • Java 8

    • OpenJDK运行时环境(内部版本1.8.0_181-8u181-b13-2〜deb9u1-b13)
    • OpenJDK 64位服务器VM(内部版本25.181-b13,混合模式)
  • Java 12

    • OpenJDK运行时环境(内部版本12 + 33)
    • OpenJDK 64位服务器VM(内部版本12 + 33,混合模式,共享)
  • VM选项: -XX:+UseG1GC -server -Xmx1024m -Xms1024m

  • CPU:8核

JMH吞吐量结果

  • 预热:10次迭代,每次1秒
  • 测量:10次迭代,每次1秒
  • 线程:1个线程,将同步迭代
  • 单位:ops / s

比较表

流+复杂过滤器

public void complexFilter(ExecutionPlan plan, Blackhole blackhole) {
        long count = plan.getDoubles()
                .stream()
                .filter(d -> d < Math.PI
                        && d > Math.E
                        && d != 3
                        && d != 2)
                .count();

        blackhole.consume(count);
    }
Run Code Online (Sandbox Code Playgroud)

流+多个过滤器

public void multipleFilters(ExecutionPlan plan, Blackhole blackhole) {
        long count = plan.getDoubles()
                .stream()
                .filter(d -> d > Math.PI)
                .filter(d -> d < Math.E)
                .filter(d -> d != 3)
                .filter(d -> d != 2)
                .count();

        blackhole.consume(count);
    }
Run Code Online (Sandbox Code Playgroud)

并行流+复合滤波器

public void complexFilterParallel(ExecutionPlan plan, Blackhole blackhole) {
        long count = plan.getDoubles()
                .stream()
                .parallel()
                .filter(d -> d < Math.PI
                        && d > Math.E
                        && d != 3
                        && d != 2)
                .count();

        blackhole.consume(count);
    }
Run Code Online (Sandbox Code Playgroud)

并行流+多个过滤器

public void multipleFiltersParallel(ExecutionPlan plan, Blackhole blackhole) {
        long count = plan.getDoubles()
                .stream()
                .parallel()
                .filter(d -> d > Math.PI)
                .filter(d -> d < Math.E)
                .filter(d -> d != 3)
                .filter(d -> d != 2)
                .count();

        blackhole.consume(count);
    }

Run Code Online (Sandbox Code Playgroud)

旧时尚Java迭代

public void oldFashionFilters(ExecutionPlan plan, Blackhole blackhole) {
        long count = 0;
        for (int i = 0; i < plan.getDoubles().size(); i++) {
            if (plan.getDoubles().get(i) > Math.PI
                    && plan.getDoubles().get(i) > Math.E
                    && plan.getDoubles().get(i) != 3
                    && plan.getDoubles().get(i) != 2) {
                count = count + 1;
            }
        }

        blackhole.consume(count);
    }

Run Code Online (Sandbox Code Playgroud)

您可以通过运行docker命令自行尝试:

对于Java 8:

泊坞窗运行-it volkodav / java-filter-benchmark:java8

对于Java 12:

泊坞窗运行-it volkodav / java-filter-benchmark:java12

源代码:

https://github.com/volkodavs/javafilters-benchmarks

Ser*_*rge 23

谢谢大家的帮助,尤其是@Aleksey Shipilev!

将更改应用于JMH基准后,结果看起来更逼真(?)

变化:

  1. 更改要在每次基准测试迭代之前/之后执行的设置方法。

    @Setup(Level.Invocation) -> @Setup(Level.Iteration)

  2. 停止JMH在迭代之间强制执行GC。在每次迭代之前强制使用Full GC很可能会破坏GC的启发式方法。(c)Aleksey Shipilev

    -gc true -> -gc false

注意:gc默认为false。

比较表

根据新的性能基准,与Java 8相比,Java 12的性能不会降低。

注意:进行这些更改后,小数组大小的吞吐量错误显着增加了100%以上,而大型数据集保持不变。

结果表

原始结果

Java 8

# Run complete. Total time: 04:36:29

Benchmark                                (arraySize)   Mode  Cnt         Score         Error  Units
FilterBenchmark.complexFilter                     10  thrpt   50   5947577.648 ±  257535.736  ops/s
FilterBenchmark.complexFilter                    100  thrpt   50   3131081.555 ±   72868.963  ops/s
FilterBenchmark.complexFilter                   1000  thrpt   50    489666.688 ±    6539.466  ops/s
FilterBenchmark.complexFilter                  10000  thrpt   50     17297.424 ±      93.890  ops/s
FilterBenchmark.complexFilter                 100000  thrpt   50      1398.702 ±      72.820  ops/s
FilterBenchmark.complexFilter                1000000  thrpt   50        81.309 ±       0.547  ops/s
FilterBenchmark.complexFilterParallel             10  thrpt   50     24515.743 ±     450.363  ops/s
FilterBenchmark.complexFilterParallel            100  thrpt   50     25584.773 ±     290.249  ops/s
FilterBenchmark.complexFilterParallel           1000  thrpt   50     24313.066 ±     425.817  ops/s
FilterBenchmark.complexFilterParallel          10000  thrpt   50     11909.085 ±      51.534  ops/s
FilterBenchmark.complexFilterParallel         100000  thrpt   50      3260.864 ±     522.565  ops/s
FilterBenchmark.complexFilterParallel        1000000  thrpt   50       406.297 ±      96.590  ops/s
FilterBenchmark.multipleFilters                   10  thrpt   50   3785766.911 ±   27971.998  ops/s
FilterBenchmark.multipleFilters                  100  thrpt   50   1806210.041 ±   11578.529  ops/s
FilterBenchmark.multipleFilters                 1000  thrpt   50    211435.445 ±   28585.969  ops/s
FilterBenchmark.multipleFilters                10000  thrpt   50     12614.670 ±     370.086  ops/s
FilterBenchmark.multipleFilters               100000  thrpt   50      1228.127 ±      21.208  ops/s
FilterBenchmark.multipleFilters              1000000  thrpt   50        99.149 ±       1.370  ops/s
FilterBenchmark.multipleFiltersParallel           10  thrpt   50     23896.812 ±     255.117  ops/s
FilterBenchmark.multipleFiltersParallel          100  thrpt   50     25314.613 ±     169.724  ops/s
FilterBenchmark.multipleFiltersParallel         1000  thrpt   50     23113.388 ±     305.605  ops/s
FilterBenchmark.multipleFiltersParallel        10000  thrpt   50     12676.057 ±     119.555  ops/s
FilterBenchmark.multipleFiltersParallel       100000  thrpt   50      3373.367 ±     211.108  ops/s
FilterBenchmark.multipleFiltersParallel      1000000  thrpt   50       477.870 ±      70.878  ops/s
FilterBenchmark.oldFashionFilters                 10  thrpt   50  45874144.758 ± 2210325.177  ops/s
FilterBenchmark.oldFashionFilters                100  thrpt   50   4902625.828 ±   60397.844  ops/s
FilterBenchmark.oldFashionFilters               1000  thrpt   50    662102.438 ±    5038.465  ops/s
FilterBenchmark.oldFashionFilters              10000  thrpt   50     29390.911 ±     257.311  ops/s
FilterBenchmark.oldFashionFilters             100000  thrpt   50      1999.032 ±       6.829  ops/s
FilterBenchmark.oldFashionFilters            1000000  thrpt   50       200.564 ±       1.695  ops/s
Run Code Online (Sandbox Code Playgroud)

Java 12

# Run complete. Total time: 04:36:20

Benchmark                                (arraySize)   Mode  Cnt         Score         Error  Units
FilterBenchmark.complexFilter                     10  thrpt   50  10338525.553 ? 1677693.433  ops/s
FilterBenchmark.complexFilter                    100  thrpt   50   4381301.188 ?  287299.598  ops/s
FilterBenchmark.complexFilter                   1000  thrpt   50    607572.430 ?    9367.026  ops/s
FilterBenchmark.complexFilter                  10000  thrpt   50     30643.286 ?     472.033  ops/s
FilterBenchmark.complexFilter                 100000  thrpt   50      1450.341 ?       3.730  ops/s
FilterBenchmark.complexFilter                1000000  thrpt   50       138.996 ?       2.052  ops/s
FilterBenchmark.complexFilterParallel             10  thrpt   50     21289.444 ?     183.245  ops/s
FilterBenchmark.complexFilterParallel            100  thrpt   50     20105.239 ?     124.759  ops/s
FilterBenchmark.complexFilterParallel           1000  thrpt   50     19418.830 ?     141.664  ops/s
FilterBenchmark.complexFilterParallel          10000  thrpt   50     13874.585 ?     104.418  ops/s
FilterBenchmark.complexFilterParallel         100000  thrpt   50      5334.947 ?      25.452  ops/s
FilterBenchmark.complexFilterParallel        1000000  thrpt   50       781.046 ?       9.687  ops/s
FilterBenchmark.multipleFilters                   10  thrpt   50   5460308.048 ?  478157.935  ops/s
FilterBenchmark.multipleFilters                  100  thrpt   50   2227583.836 ?  113078.932  ops/s
FilterBenchmark.multipleFilters                 1000  thrpt   50    287157.190 ?    1114.346  ops/s
FilterBenchmark.multipleFilters                10000  thrpt   50     16268.016 ?     704.735  ops/s
FilterBenchmark.multipleFilters               100000  thrpt   50      1531.516 ?       2.729  ops/s
FilterBenchmark.multipleFilters              1000000  thrpt   50       123.881 ?       1.525  ops/s
FilterBenchmark.multipleFiltersParallel           10  thrpt   50     20403.993 ?     147.247  ops/s
FilterBenchmark.multipleFiltersParallel          100  thrpt   50     19426.222 ?      96.979  ops/s
FilterBenchmark.multipleFiltersParallel         1000  thrpt   50     17692.433 ?      67.606  ops/s
FilterBenchmark.multipleFiltersParallel        10000  thrpt   50     12108.482 ?      34.500  ops/s
FilterBenchmark.multipleFiltersParallel       100000  thrpt   50      3782.756 ?      22.044  ops/s
FilterBenchmark.multipleFiltersParallel      1000000  thrpt   50       589.972 ?      71.448  ops/s
FilterBenchmark.oldFashionFilters                 10  thrpt   50  41024334.062 ? 1374663.440  ops/s
FilterBenchmark.oldFashionFilters                100  thrpt   50   6011852.027 ?  246202.642  ops/s
FilterBenchmark.oldFashionFilters               1000  thrpt   50    553243.594 ?    2217.912  ops/s
FilterBenchmark.oldFashionFilters              10000  thrpt   50     29188.753 ?     580.958  ops/s
FilterBenchmark.oldFashionFilters             100000  thrpt   50      2061.738 ?       8.456  ops/s
FilterBenchmark.oldFashionFilters            1000000  thrpt   50       196.105 ?       3.203  ops/s
Run Code Online (Sandbox Code Playgroud)

  • 调用-&gt;迭代很明显,gc并不明显;海事组织这不能回答问题。我希望Alexey会发表他的发现 (3认同)