tmf*_*mnk 1 r lubridate tidyverse
假设这样的df:
df <- data.frame(id = c(rep(1:5, each = 2)),
time1 = c("2008-10-12", "2008-08-10", "2006-01-09", "2008-03-13", "2008-09-12", "2007-05-30", "2003-09-29","2003-09-29", "2003-04-01", "2003-04-01"),
time2 = c("2009-03-20", "2009-06-15", "2006-02-13", "2008-04-17", "2008-10-17", "2007-07-04", "2004-01-15", "2004-01-15", "2003-07-04", "2003-07-04"))
id time1 time2
1 1 2008-10-12 2009-03-20
2 1 2008-08-10 2009-06-15
3 2 2006-01-09 2006-02-13
4 2 2008-03-13 2008-04-17
5 3 2008-09-12 2008-10-17
6 3 2007-05-30 2007-07-04
7 4 2003-09-29 2004-01-15
8 4 2003-09-29 2004-01-15
9 5 2003-04-01 2003-07-04
10 5 2003-04-01 2003-07-04
Run Code Online (Sandbox Code Playgroud)
我尝试做的是,首先lubridate在变量“ time1”和“ time2”之间创建一个间隔。其次,我要按“ id”分组,比较下一行是否与当前行相同,以及当前行是否与上一行相同。我可以做到:
library(tidyverse)
df %>%
mutate_at(2:3, funs(as.Date(., format = "%Y-%m-%d"))) %>%
mutate(overlap = interval(time1, time2)) %>%
group_by(id) %>%
mutate(cond1 = ifelse(lead(overlap) == overlap, 1, 0),
cond2 = ifelse(lag(overlap) == overlap, 1, 0))
id time1 time2 overlap cond1 cond2
<int> <date> <date> <S4: Interval> <dbl> <dbl>
1 1 2008-10-12 2009-03-20 2008-10-12 UTC--2009-03-20 UTC 0 NA
2 1 2008-08-10 2009-06-15 2008-08-10 UTC--2009-06-15 UTC NA 0
3 2 2006-01-09 2006-02-13 2006-01-09 UTC--2006-02-13 UTC 1 NA
4 2 2008-03-13 2008-04-17 2008-03-13 UTC--2008-04-17 UTC NA 1
5 3 2008-09-12 2008-10-17 2008-09-12 UTC--2008-10-17 UTC 1 NA
6 3 2007-05-30 2007-07-04 2007-05-30 UTC--2007-07-04 UTC NA 1
7 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC 1 NA
8 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC NA 1
9 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC 1 NA
10 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC NA 1
Run Code Online (Sandbox Code Playgroud)
如您所见,问题是对于id == 2和id == 3,即使间隔不相同,两个条件都被评估为TRUE。对于id == 1,它正确地评估为FALSE,对于id === 4和id == 5,它正确评估为TRUE。
现在,当我将间隔转换为字符时,它会对其进行正确评估:
df %>%
mutate_at(2:3, funs(as.Date(., format = "%Y-%m-%d"))) %>%
mutate(overlap = as.character(interval(time1, time2))) %>%
group_by(id) %>%
mutate(cond1 = ifelse(lead(overlap) == overlap, 1, 0),
cond2 = ifelse(lag(overlap) == overlap, 1, 0))
id time1 time2 overlap cond1 cond2
<int> <date> <date> <chr> <dbl> <dbl>
1 1 2008-10-12 2009-03-20 2008-10-12 UTC--2009-03-20 UTC 0 NA
2 1 2008-08-10 2009-06-15 2008-08-10 UTC--2009-06-15 UTC NA 0
3 2 2006-01-09 2006-02-13 2006-01-09 UTC--2006-02-13 UTC 0 NA
4 2 2008-03-13 2008-04-17 2008-03-13 UTC--2008-04-17 UTC NA 0
5 3 2008-09-12 2008-10-17 2008-09-12 UTC--2008-10-17 UTC 0 NA
6 3 2007-05-30 2007-07-04 2007-05-30 UTC--2007-07-04 UTC NA 0
7 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC 1 NA
8 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC NA 1
9 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC 1 NA
10 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC NA 1
Run Code Online (Sandbox Code Playgroud)
问题是,为什么不将某些间隔评估为相同?
我认为这与lubridate实际计算有关。
当我计算之间的差异date1和date2,发生这种情况:
df %>%
mutate_at(2:3, funs(as.Date(., format = "%Y-%m-%d"))) %>%
mutate(overlap = time2 - time1)
id time1 time2 overlap
1 1 2008-10-12 2009-03-20 159 days
2 1 2008-08-10 2009-06-15 309 days
3 2 2006-01-09 2006-02-13 35 days
4 2 2008-03-13 2008-04-17 35 days
5 3 2008-09-12 2008-10-17 35 days
6 3 2007-05-30 2007-07-04 35 days
7 4 2003-09-29 2004-01-15 108 days
8 4 2003-09-29 2004-01-15 108 days
9 5 2003-04-01 2003-07-04 94 days
10 5 2003-04-01 2003-07-04 94 days
Run Code Online (Sandbox Code Playgroud)
这样我们就可以知道间隔时间在一天中是相同的。
现在,overlap实际计算的是什么?为了找出答案,我对您的代码做了些微更改以报告超前和滞后,而不是1。
df %>%
mutate_at(2:3, funs(as.Date(., format = "%Y-%m-%d"))) %>%
mutate(overlap = interval(time1, time2)) %>%
group_by(id) %>%
mutate(cond1 = ifelse(lead(overlap) == overlap, lead(overlap), 0),
cond2 = ifelse(lag(overlap) == overlap, lag(overlap), 0))
# A tibble: 10 x 6
# Groups: id [5]
id time1 time2 overlap cond1 cond2
<int> <date> <date> <S4: Interval> <dbl> <dbl>
1 1 2008-10-12 2009-03-20 2008-10-12 UTC--2009-03-20 UTC 0 NA
2 1 2008-08-10 2009-06-15 2008-08-10 UTC--2009-06-15 UTC NA 0
3 2 2006-01-09 2006-02-13 2006-01-09 UTC--2006-02-13 UTC 3024000 NA
4 2 2008-03-13 2008-04-17 2008-03-13 UTC--2008-04-17 UTC NA 3024000
5 3 2008-09-12 2008-10-17 2008-09-12 UTC--2008-10-17 UTC 3024000 NA
6 3 2007-05-30 2007-07-04 2007-05-30 UTC--2007-07-04 UTC NA 3024000
7 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC 9331200 NA
8 4 2003-09-29 2004-01-15 2003-09-29 UTC--2004-01-15 UTC NA 9331200
9 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC 8121600 NA
10 5 2003-04-01 2003-07-04 2003-04-01 UTC--2003-07-04 UTC NA 8121600
Run Code Online (Sandbox Code Playgroud)
在这里,我们看到了这一点,lead并且lag实际上是在特定时间间隔内计算差异,而不是查看实际间隔的开始和结束日期。这样看来,为什么它认为某些间隔应该相等,而字符串却不相等。
让我们看一下由产生的对象interval。
a <- interval(df$time1, df$time2)
str(a)
#Formal class 'Interval' [package "lubridate"] with 3 slots
#..@ .Data: num [1:10] 13737600 26697600 3024000 3024000 3024000 ...
#..@ start: POSIXct[1:10], format: "2008-10-12" "2008-08-10" "2006-01-09" ...
#..@ tzone: chr "UTC"
Run Code Online (Sandbox Code Playgroud)
这是一个S4级有三个插槽:.Data,start和tzone。
呼叫a显示了时间间隔。
a
[1] 2008-10-12 UTC--2009-03-20 UTC 2008-08-10 UTC--2009-06-15 UTC 2006-01-09 UTC--2006-02-13 UTC
[4] 2008-03-13 UTC--2008-04-17 UTC 2008-09-12 UTC--2008-10-17 UTC 2007-05-30 UTC--2007-07-04 UTC
[7] 2003-09-29 UTC--2004-01-15 UTC 2003-09-29 UTC--2004-01-15 UTC 2003-04-01 UTC--2003-07-04 UTC
[10] 2003-04-01 UTC--2003-07-04 UTC
Run Code Online (Sandbox Code Playgroud)
但是,当您对进行计算时a,它是在进行的.Data,这是从指定日期开始的一系列秒数(请参阅参考资料?interval)。
a@.Data
#[1] 13737600 26697600 3024000 3024000 3024000 3024000 9331200 9331200 8121600 8121600
Run Code Online (Sandbox Code Playgroud)
对于间隔的开始日期,我们需要访问start广告位。
a@start
#[1] "2008-10-12 UTC" "2008-08-10 UTC" "2006-01-09 UTC" "2008-03-13 UTC" "2008-09-12 UTC"
#[6] "2007-05-30 UTC" "2003-09-29 UTC" "2003-09-29 UTC" "2003-04-01 UTC" "2003-04-01 UTC"
Run Code Online (Sandbox Code Playgroud)
还有时区
a@tzone
#[1] "UTC"
Run Code Online (Sandbox Code Playgroud)
我们还可以查看元素之间的关系。最后一个元素和最后一个元素具有相同的间隔。
a[9] == a[10]
#[1] TRUE
Run Code Online (Sandbox Code Playgroud)
它们是相同的对象。
identical(a[9], a[10])
#[1] TRUE
Run Code Online (Sandbox Code Playgroud)
但是,当您检查元素是否相等时,真正检查的是什么呢?元素3和4具有相同的时间差,但间隔不同。因此,当您检查其滞后/超前是否相等时,它将返回TRUE。但是由于它们的间隔日期不同,所以不应该这样。因此,当我们检查它们是否相同时,才可以得到我们期望的结果。
a[3] == a[4]
#[1] TRUE
a[3]@.Data == a[4]@.Data
#[1] TRUE
identical(a[3], a[4])
#[1] FALSE
Run Code Online (Sandbox Code Playgroud)
所以发生了什么事?什么a[3] == a[4]真正的检查是a[3]@.Data == a[4]@.Data因此它的检查,看是否3024000平等3024000。这样它就返回了TRUE。但是相同检查所有插槽,发现它们不相同,因为start每个插槽都不相同。
然后,我考虑过使用与超前/滞后相同的方法,以便我们可以在代码中加入一种逻辑,但请看一下。
a[9]
#[1] 2003-04-01 UTC--2003-07-04 UTC
# now lead
lead(a[9])
#2003-04-01 UTC--NA
Run Code Online (Sandbox Code Playgroud)
输出看起来不像a[10]预期的那样。
#now lag
lag(a[9])
#[1] NA
#attr(,"start")
#[1] "2003-04-01 UTC"
#attr(,"tzone")
#[1] "UTC"
#attr(,"class")
#[1] "Interval"
#attr(,"class")attr(,"package")
#[1] "lubridate"
Run Code Online (Sandbox Code Playgroud)
所以lead和lag对类S4对象有不同的影响。为了更好地处理您的第一次尝试输出的内容,我这样做是:
df %>%
mutate_at(2:3, funs(as.Date(., format = "%Y-%m-%d"))) %>%
mutate(overlap = interval(time1, time2)) %>%
group_by(id) %>%
mutate(cond1 = lead(overlap),
cond2 = lag(overlap))
Run Code Online (Sandbox Code Playgroud)
我收到很多警告信息,说
#In mutate_impl(.data, dots) :
# Vectorizing 'Interval' elements may not preserve their attributes
Run Code Online (Sandbox Code Playgroud)
我对R对象了解不足,无法理解S4类中的数据是如何存储的,但是它看上去与典型的S3对象不同。
就像as.character您一样,似乎是使用的方法。