ASh*_*lly 17
我在这里用C 实现了滚动中值计算器(Gist).它使用max-median-min堆结构:中位数在堆[0](位于K项数组的中心).在堆[1]处有一个minheap,在堆[-1]处有一个maxheap(使用负索引).
它与来自R源的Turlach实现不完全相同:这一个支持即时插入的值,而R版本一次作用于整个缓冲区.但我相信时间的复杂性是一样的.它可以很容易地用于实现整个缓冲区版本 (可能需要添加一些代码来处理R的"endrules").
接口:
//Customize for your data Item type
typedef int Item;
#define ItemLess(a,b) ((a)<(b))
#define ItemMean(a,b) (((a)+(b))/2)
typedef struct Mediator_t Mediator;
//creates new Mediator: to calculate `nItems` running median.
//mallocs single block of memory, caller must free.
Mediator* MediatorNew(int nItems);
//returns median item (or average of 2 when item count is even)
Item MediatorMedian(Mediator* m);
//Inserts item, maintains median in O(lg nItems)
void MediatorInsert(Mediator* m, Item v)
{
int isNew = (m->ct < m->N);
int p = m->pos[m->idx];
Item old = m->data[m->idx];
m->data[m->idx] = v;
m->idx = (m->idx+1) % m->N;
m->ct += isNew;
if (p > 0) //new item is in minHeap
{ if (!isNew && ItemLess(old, v)) { minSortDown(m, p*2); }
else if (minSortUp(m, p)) { maxSortDown(m,-1); }
}
else if (p < 0) //new item is in maxheap
{ if (!isNew && ItemLess(v, old)) { maxSortDown(m, p*2); }
else if (maxSortUp(m, p)) { minSortDown(m, 1); }
}
else //new item is at median
{ if (maxCt(m)) { maxSortDown(m,-1); }
if (minCt(m)) { minSortDown(m, 1); }
}
}
Run Code Online (Sandbox Code Playgroud)