我有一个数据集,其来源(“ from”),目的地(“ to”)和价格如下:
from to price
A B 28109
A D 2356
A E 4216
B A 445789
B D 123
D A 45674
D B 1979
Run Code Online (Sandbox Code Playgroud)
我也想考虑返回路线的总价。例如,A-B由以下数据组成:
from to price
A B 28109
B A 445789
Run Code Online (Sandbox Code Playgroud)
然后,取价格的总和(28109 + 445789)。输出将如下所示:
route total_price
A - B 473898
A - D 48030
A - E 4216
B - D 2102
Run Code Online (Sandbox Code Playgroud)
我当时想运行一个for循环,但是我的数据量很大(800k行)。任何帮助将不胜感激。非常感谢。
您可以通过对“从”到“对”进行排序,然后对已排序的对进行分组并求和来完成此操作。
编辑:请参阅@JasonAizkalns的tidyverse等效答案
library(data.table)
setDT(df)
df[, .(total_price = sum(price))
, by = .(route = paste(pmin(from, to), '-', pmax(from, to)))]
# route total_price
# 1: A - B 473898
# 2: A - D 48030
# 3: A - E 4216
# 4: B - D 2102
Run Code Online (Sandbox Code Playgroud)
@Frank notes that this result hides the fact that route "A - E" is not complete, in the sense that there is no row of the original data with from == 'E' and to == 'A'. He's offered a good way of capturing that info (and more), and I've added some others below.
df[, .(total_price = sum(price), complete = .N > 1)
, by = .(route = paste(pmin(from, to), '-', pmax(from, to)))]
# route total_price complete
# 1: A - B 473898 TRUE
# 2: A - D 48030 TRUE
# 3: A - E 4216 FALSE
# 4: B - D 2102 TRUE
df[, .(total_price = sum(price), paths_counted = .(paste(from, '-', to)))
, by = .(route = paste(pmin(from, to), '-', pmax(from, to)))]
# route total_price paths_counted
# 1: A - B 473898 A - B,B - A
# 2: A - D 48030 A - D,D - A
# 3: A - E 4216 A - E
# 4: B - D 2102 B - D,D - B
Run Code Online (Sandbox Code Playgroud)
Data used
df <- fread('
from to price
A B 28109
A D 2356
A E 4216
B A 445789
B D 123
D A 45674
D B 1979')
Run Code Online (Sandbox Code Playgroud)