如何提高图像分类模型中的模型精度

0 python image-processing deep-learning conv-neural-network keras

我在做图像分类,我得到的训练准确度是 90,验证是 85,请帮助我如何提高准确度。这是我的模型。

model = Models.Sequential()

model.add(Layers.Conv2D(200,kernel_size=(3,3),activation='relu',input_shape=(64,64,3)))
model.add(Layers.Conv2D(180,kernel_size=(3,3),activation='relu'))
model.add(Layers.MaxPool2D(2,2))
model.add(Layers.Conv2D(180,kernel_size=(3,3),activation='relu'))
model.add(Layers.Conv2D(140,kernel_size=(3,3),activation='relu'))
model.add(Layers.Conv2D(100,kernel_size=(3,3),activation='relu'))
model.add(Layers.Conv2D(50,kernel_size=(3,3),activation='relu'))
model.add(Layers.MaxPool2D(2,2))
model.add(Layers.Flatten())
model.add(Layers.Dense(180,activation='relu'))
model.add(Layers.Dropout(rate=0.5))
model.add(Layers.Dense(100,activation='relu'))
model.add(Layers.Dropout(rate=0.5))
model.add(Layers.Dense(50,activation='relu'))
model.add(Layers.Dropout(rate=0.5))
model.add(Layers.Dense(6,activation='softmax'))

model.compile(optimizer=Optimizer.Adam(lr=0.0001),loss='sparse_categorical_crossentropy',metrics=['accuracy'])
SVG(model_to_dot(model).create(prog='dot', format='svg'))
Utils.plot_model(model,to_file='model.png',show_shapes=True)
model.summary()
Run Code Online (Sandbox Code Playgroud)

这是我的时代:

Epoch 28/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3929 - acc: 0.8777 - val_loss: 0.4905 - val_acc: 0.8437
Epoch 29/35
11923/11923 [==============================] - 59s 5ms/sample - loss: 0.3621 - acc: 0.8849 - val_loss: 0.5938 - val_acc: 0.8394
Epoch 30/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3541 - acc: 0.8865 - val_loss: 0.4860 - val_acc: 0.8570
Epoch 31/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3460 - acc: 0.8909 - val_loss: 0.5066 - val_acc: 0.8450
Epoch 32/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3151 - acc: 0.9001 - val_loss: 0.5091 - val_acc: 0.8517
Epoch 33/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3184 - acc: 0.9025 - val_loss: 0.5097 - val_acc: 0.8431
Epoch 34/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.3049 - acc: 0.9015 - val_loss: 0.5694 - val_acc: 0.8491
Epoch 35/35
11923/11923 [==============================] - 58s 5ms/sample - loss: 0.2896 - acc: 0.9085 - val_loss: 0.5293 - val_acc: 0.8464
Run Code Online (Sandbox Code Playgroud)

请帮助我如何降低错误率。

Edu*_*res 5

没有唯一的答案。您应该测试并发现对您的问题有效的方法。

你可以尝试一些事情:

  • 增加辍学
  • 改变你的网络架构:移除层,添加更多层
  • 修改训练参数:测试其他优化器,不同的时期数和学习率
  • 使用你的训练集:有时问题出在你的数据中,分析你的数据分布,确保你的训练集能够很好地代表你的类并且是很好的平衡。根据您的问题,您也可以测试数据增强技术。

我怎么说,没有唯一的答案,您必须找出适合您情况的方法。处理深度学习就是不断地做实验以达到解决问题的最佳模型。