我有一个脚本中的data.frame或tibble,它们被写入CSV文件。在另一个脚本中,该相同的CSV文件被读取到data.frame或tibble中。通过使用read_csv()带有col_types=参数的,我可以指定要读取的列类型。这是一个示例:
# Create an example dataframe
df <- tibble::tibble(a=1L
, b=1.0
, c="a"
, d=TRUE
, e=lubridate::ymd_hms("2019-03-19T13:15:18Z")
, f=lubridate::ymd("2019-03-19")
, g=factor("a"))
# Write csv to file
readr::write_csv(df, "temp.csv")
# read it back in, supplying a col_types string spec
readr::read_csv("temp.csv", col_types="idclTDf")
#> # A tibble: 1 x 7
#> a b c d e f g
#> <int> <dbl> <chr> <lgl> <dttm> <date> <fct>
#> 1 1 1 a TRUE 2019-03-19 13:15:18 2019-03-19 a
Run Code Online (Sandbox Code Playgroud)
由reprex软件包(v0.2.1)创建于2019-03-19
问题是我需要知道col_types=函数上的参数read_csv()(或者让我猜,这是我不想做的)。我想要一种获取原始文件的方法df,然后在将其写出之前,col_types从df对象生成字符串,该对象可用于读回转储的CSV。也就是说,我想要一些东西来创建"idclTDf"给定的字符串data.frame作为参数。
我看到这里有一个功能请求(我已经加了两美分):https : //github.com/tidyverse/readr/issues/895。
我确实有一个解决方案,它有效,但我认为它非常不完整且没有强化。这是我对解决方案的尝试。
# https://github.com/tidyverse/readr/issues/895
# Create function to take a tibble and return a character string that can be used in `readr::read_csv()`
# as the `col_types` argument to re-read this back into a dataframe after it had been written out
# by `write_csv()`.
get_col_types_short <- function(.df) {
# Get column classes from input dataframe
lst_col_classes__ <- purrr::map(.df, ~ class(.x))
# Map classes to known single-character col_types indicator
vl_col_class_char__ <- purrr::map_chr(lst_col_classes__, function(.e) {
dplyr::case_when(
"logical" %in% .e ~ "l"
, "integer" %in% .e ~ "i"
, "numeric" %in% .e ~ "d"
, "double" %in% .e ~ "d"
, "character" %in% .e ~ "c"
, "factor" %in% .e ~ "f"
, "Date" %in% .e ~ "D"
, "POSIXct" %in% .e ~ "T"
, TRUE ~ "c"
)
})
# Return vector of single-character col_type indicator.
# Element name is the source column it came from.
vl_col_class_char__
}
# Test it:
df <- tibble::tibble(a=1L
, b=1.0
, c="a"
, d=TRUE
, e=lubridate::ymd_hms("2019-03-19T13:15:18Z")
, f=lubridate::ymd("2019-03-19")
, g=factor("a"))
v__ <- get_col_types_short(df)
# Show what is actually returned
v__
#> a b c d e f g
#> "i" "d" "c" "l" "T" "D" "f"
# Collapse it to show how to use it
paste(v__, collapse="")
#> [1] "idclTDf"
# Write csv to file
readr::write_csv(df, "temp.csv")
# read it back in, using the above col_types string spec
readr::read_csv("temp.csv", col_types=paste(v__, collapse=""))
#> # A tibble: 1 x 7
#> a b c d e f g
#> <int> <dbl> <chr> <lgl> <dttm> <date> <fct>
#> 1 1 1 a TRUE 2019-03-19 13:15:18 2019-03-19 a
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v0.2.1)于 2019 年 3 月 19 日创建