同一列中具有不同格式的熊猫日期时间

Sti*_*tig 2 python datetime pandas

我有一个 Pandas 数据框,它有两种不同格式的日期时间,例如:

3/14/2019 5:15:32 AM
2019-08-03 05:15:35
2019-01-03 05:15:33
2019-01-03 05:15:33
2/28/2019 5:15:31 AM
2/27/2019 11:18:39 AM
Run Code Online (Sandbox Code Playgroud)

...

我尝试了各种格式但出现错误 like ValueError: unconverted data remains: AM

我想将格式设为 2019-02-28 并删除时间

Nat*_*iel 5

您可以使用pd.to_datetime().dt.strftime()有效地将整个列转换为日期时间对象,然后转换为字符串,熊猫智能地猜测日期格式:

df = pd.Series('''3/14/2019 5:15:32 AM
2019-08-03 05:15:35
2019-01-03 05:15:33
2019-01-03 05:15:33
2/28/2019 5:15:31 AM
2/27/2019 11:18:39 AM'''.split('\n'), name='date', dtype=str).to_frame()

print(pd.to_datetime(df.date).dt.strftime('%Y-%m-%d'))
Run Code Online (Sandbox Code Playgroud)
0    2019-03-14
1    2019-08-03
2    2019-01-03
3    2019-01-03
4    2019-02-28
5    2019-02-27
Name: date, dtype: object
Run Code Online (Sandbox Code Playgroud)

如果这不能满足您的需求,您将需要识别不同类型的格式并在将它们转换为日期时间对象时应用不同的设置:

# Classify date column by format type
df['format'] = 1
df.loc[df.date.str.contains('/'), 'format'] = 2
df['new_date'] = pd.to_datetime(df.date)

# Convert to datetime with two different format settings
df.loc[df.format == 1, 'new_date'] = pd.to_datetime(df.loc[df.format == 1, 'date'], format = '%Y-%d-%m %H:%M:%S').dt.strftime('%Y-%m-%d')
df.loc[df.format == 2, 'new_date'] = pd.to_datetime(df.loc[df.format == 2, 'date'], format = '%m/%d/%Y %H:%M:%S %p').dt.strftime('%Y-%m-%d')
print(df)
Run Code Online (Sandbox Code Playgroud)
                    date  format    new_date
0   3/14/2019 5:15:32 AM       2  2019-03-14
1    2019-08-03 05:15:35       1  2019-03-08
2    2019-01-03 05:15:33       1  2019-03-01
3    2019-01-03 05:15:33       1  2019-03-01
4   2/28/2019 5:15:31 AM       2  2019-02-28
5  2/27/2019 11:18:39 AM       2  2019-02-27
Run Code Online (Sandbox Code Playgroud)