Gar*_*ary 8 python keras tensorflow tf.keras
这是创建keras模型的两种方法,但是output shapes两种方法的汇总结果不同。显然,前者可以打印更多信息,并且可以更轻松地检查网络的正确性。
import tensorflow as tf
from tensorflow.keras import Input, layers, Model
class subclass(Model):
def __init__(self):
super(subclass, self).__init__()
self.conv = layers.Conv2D(28, 3, strides=1)
def call(self, x):
return self.conv(x)
def func_api():
x = Input(shape=(24, 24, 3))
y = layers.Conv2D(28, 3, strides=1)(x)
return Model(inputs=[x], outputs=[y])
if __name__ == '__main__':
func = func_api()
func.summary()
sub = subclass()
sub.build(input_shape=(None, 24, 24, 3))
sub.summary()
Run Code Online (Sandbox Code Playgroud)
输出?
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 24, 24, 3) 0
_________________________________________________________________
conv2d (Conv2D) (None, 22, 22, 28) 784
=================================================================
Total params: 784
Trainable params: 784
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) multiple 784
=================================================================
Total params: 784
Trainable params: 784
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
因此,我应该如何使用子类方法来获取output shapesummary()?
我解决问题的方式与Elazar提到的非常相似。重写类中的函数summary() subclass。然后你可以在使用模型子类化时直接调用summary():
class subclass(Model):
def __init__(self):
...
def call(self, x):
...
def summary(self):
x = Input(shape=(24, 24, 3))
model = Model(inputs=[x], outputs=self.call(x))
return model.summary()
if __name__ == '__main__':
sub = subclass()
sub.summary()
Run Code Online (Sandbox Code Playgroud)
我已经使用这种方法解决了这个问题,我不知道是否有更简单的方法。
class subclass(Model):
def __init__(self):
...
def call(self, x):
...
def model(self):
x = Input(shape=(24, 24, 3))
return Model(inputs=[x], outputs=self.call(x))
if __name__ == '__main__':
sub = subclass()
sub.model().summary()
Run Code Online (Sandbox Code Playgroud)
我想关键点是_init_graph_network类中的方法Network,它是Model. _init_graph_network如果在调用方法时指定inputs和outputs参数,将被调用__init__。
所以会有两种可能的方法:
_init_graph_network方法构建模型图。并且这两种方法都需要输入层和输出(从 需要self.call)。
现在调用summary将给出确切的输出形状。但是它会显示Input层,它不是子类模型的一部分。
from tensorflow import keras
from tensorflow.keras import layers as klayers
class MLP(keras.Model):
def __init__(self, input_shape=(32), **kwargs):
super(MLP, self).__init__(**kwargs)
# Add input layer
self.input_layer = klayers.Input(input_shape)
self.dense_1 = klayers.Dense(64, activation='relu')
self.dense_2 = klayers.Dense(10)
# Get output layer with `call` method
self.out = self.call(self.input_layer)
# Reinitial
super(MLP, self).__init__(
inputs=self.input_layer,
outputs=self.out,
**kwargs)
def build(self):
# Initialize the graph
self._is_graph_network = True
self._init_graph_network(
inputs=self.input_layer,
outputs=self.out
)
def call(self, inputs):
x = self.dense_1(inputs)
return self.dense_2(x)
if __name__ == '__main__':
mlp = MLP(16)
mlp.summary()
Run Code Online (Sandbox Code Playgroud)
输出将是:
Model: "mlp_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 16)] 0
_________________________________________________________________
dense (Dense) (None, 64) 1088
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 1,738
Trainable params: 1,738
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
小智 5
我分析了Adi Shumely的答案:
因此,我提出这个解决方案,不需要对模型进行任何修改,只需要通过添加对 call() 方法的调用来改进模型,因为它是在调用 summaries() 方法之前构建的具有输入张量的模型。我尝试了自己的模型以及此提要中提供的三个模型,到目前为止它有效。
来自此提要的第一篇文章:
import tensorflow as tf
from tensorflow.keras import Input, layers, Model
class subclass(Model):
def __init__(self):
super(subclass, self).__init__()
self.conv = layers.Conv2D(28, 3, strides=1)
def call(self, x):
return self.conv(x)
if __name__ == '__main__':
sub = subclass()
sub.build(input_shape=(None, 24, 24, 3))
# Adding this call to the call() method solves it all
sub.call(Input(shape=(24, 24, 3)))
# And the summary() outputs all the information
sub.summary()
Run Code Online (Sandbox Code Playgroud)
来自提要的第二个帖子
from tensorflow import keras
from tensorflow.keras import layers as klayers
class MLP(keras.Model):
def __init__(self, **kwargs):
super(MLP, self).__init__(**kwargs)
self.dense_1 = klayers.Dense(64, activation='relu')
self.dense_2 = klayers.Dense(10)
def call(self, inputs):
x = self.dense_1(inputs)
return self.dense_2(x)
if __name__ == '__main__':
mlp = MLP()
mlp.build(input_shape=(None, 16))
mlp.call(klayers.Input(shape=(16)))
mlp.summary()
Run Code Online (Sandbox Code Playgroud)
从提要的最后一篇文章开始
import tensorflow as tf
class MyModel(tf.keras.Model):
def __init__(self, **kwargs):
super(MyModel, self).__init__(**kwargs)
self.dense10 = tf.keras.layers.Dense(10, activation=tf.keras.activations.softmax)
self.dense20 = tf.keras.layers.Dense(20, activation=tf.keras.activations.softmax)
def call(self, inputs):
x = self.dense10(inputs)
y_pred = self.dense20(x)
return y_pred
model = MyModel()
model.build(input_shape = (None, 32, 32, 1))
model.call(tf.keras.layers.Input(shape = (32, 32, 1)))
model.summary()
Run Code Online (Sandbox Code Playgroud)