Gid*_*per 4 python python-3.x pandas scikit-learn one-hot-encoding
我有以下代码可以对我拥有的 2 列进行单热编码。
# encode city labels using one-hot encoding scheme
city_ohe = OneHotEncoder(categories='auto')
city_feature_arr = city_ohe.fit_transform(df[['city']]).toarray()
city_feature_labels = city_ohe.categories_
city_features = pd.DataFrame(city_feature_arr, columns=city_feature_labels)
phone_ohe = OneHotEncoder(categories='auto')
phone_feature_arr = phone_ohe.fit_transform(df[['phone']]).toarray()
phone_feature_labels = phone_ohe.categories_
phone_features = pd.DataFrame(phone_feature_arr, columns=phone_feature_labels)
Run Code Online (Sandbox Code Playgroud)
我想知道的是如何在 4 行中执行此操作,同时在输出中正确命名列。也就是说,我可以通过包含两个列名来创建一个正确的单热编码数组,fit_transform但是当我尝试命名结果数据框的列时,它告诉我索引的形状之间存在不匹配:
ValueError: Shape of passed values is (6, 50000), indices imply (3, 50000)
Run Code Online (Sandbox Code Playgroud)
对于背景,电话和城市都有 3 个值。
city phone
0 CityA iPhone
1 CityB Android
2 CityB iPhone
3 CityA iPhone
4 CityC Android
Run Code Online (Sandbox Code Playgroud)
Max*_*Kan 12
你快到了......就像你说的那样,你可以直接添加所有要编码的列fit_transform。
ohe = OneHotEncoder(categories='auto')
feature_arr = ohe.fit_transform(df[['phone','city']]).toarray()
feature_labels = ohe.categories_
Run Code Online (Sandbox Code Playgroud)
然后你只需要执行以下操作:
feature_labels = np.array(feature_labels).ravel()
Run Code Online (Sandbox Code Playgroud)
这使您可以根据需要命名列:
features = pd.DataFrame(feature_arr, columns=feature_labels)
Run Code Online (Sandbox Code Playgroud)