Der*_*aut 5 python neural-network keras tensorflow
使用Keras和Tensorflow在我自己的数据集上从头开始训练卷积神经网络。
learning rate = 0.0001,排序5个类,不使用Dropout,检查数据集两次,未找到错误的标签
模型:
model = models.Sequential()
model.add(layers.Conv2D(16,(2,2),activation='relu',input_shape=(75,75,3)))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(16,(2,2),activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(32,(2,2),activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(128,activation='relu'))
model.add(layers.Dense(5,activation='sigmoid'))
model.compile(optimizer=optimizers.adam(lr=0.0001),
loss='categorical_crossentropy',
metrics=['acc'])
history = model.fit_generator(train_generator,
steps_per_epoch=100,
epochs=50,
validation_data=val_generator,
validation_steps=25)
Run Code Online (Sandbox Code Playgroud)
每当模型达到25-35个纪元(准确度为80-90%)时,就会发生这种情况:
Epoch 31/50
100/100 [==============================] - 3s 34ms/step - loss: 0.3524 - acc: 0.8558 - val_loss: 0.4151 - val_acc: 0.7992
Epoch 32/50
100/100 [==============================] - 3s 34ms/step - loss: 0.3393 - acc: 0.8700 - val_loss: 0.4384 - val_acc: 0.7951
Epoch 33/50
100/100 [==============================] - 3s 34ms/step - loss: 0.3321 - acc: 0.8702 - val_loss: 0.4993 - val_acc: 0.7620
Epoch 34/50
100/100 [==============================] - 3s 33ms/step - loss: 1.5444 - acc: 0.3302 - val_loss: 1.6062 - val_acc: 0.1704
Epoch 35/50
100/100 [==============================] - 3s 34ms/step - loss: 1.6094 - acc: 0.2935 - val_loss: 1.6062 - val_acc: 0.1724
Run Code Online (Sandbox Code Playgroud)
答案也有一些类似的问题,但是大多数情况下,他们建议降低学习速度,但这完全没有帮助。
UPD:几乎所有的网络权重和偏见都变得了nan。网络以某种方式消亡
这种情况下的解决方案:
我将sigmoid最后一层的功能更改为softmax功能,并且掉落消失了
为什么会这样呢?
sigmoid激活函数用于二元(二类)分类。在多分类问题中,我们应该使用softmax函数——多分类问题的函数的特殊扩展sigmoid。
更多信息:Sigmoid 与 Softmax
特别感谢@desertnaut 和@Shubham Panchal 的错误指示
| 归档时间: |
|
| 查看次数: |
278 次 |
| 最近记录: |