ves*_*and 6 python plotly plotly-python
背景:
这个问题与 Plotly 相关,但不完全相同:如何检索主要刻度线和网格线的值?。matplotlib也提出了类似的问题,但没有得到解答:How do I show Major ticks as the first day of everymonths and secondary ticks as every day?
Plotly 太棒了,也许唯一困扰我的是自动选择刻度线/网格线以及为 x 轴选择的标签,如下图所示:
地块 1:
我认为这里显示的自然内容是每个月的第一天(当然取决于时期)。或者甚至可能只是每个刻度上的缩写月份名称'Jan'。我意识到由于所有月份的长度并不相同,因此存在技术甚至视觉上的挑战。但有人知道该怎么做吗?
可复制的片段:
import plotly
import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import pandas as pd
import numpy as np
from IPython.display import HTML
from IPython.core.display import display, HTML
import copy
# setup
init_notebook_mode(connected=True)
np.random.seed(123)
cf.set_config_file(theme='pearl')
# Random data using cufflinks
df = cf.datagen.lines()
#df = df['UUN.XY']
fig = df.iplot(asFigure=True, kind='scatter',
xTitle='Dates',yTitle='Returns',title='Returns')
iplot(fig)
Run Code Online (Sandbox Code Playgroud)
(更新了新版本的plotly的答案)
使用较新版本的plotly,您可以指定dtick = 'M1'在每个月初设置网格线。您还可以通过以下方式格式化月份的显示tickformat:
fig.update_xaxes(dtick="M2",
tickformat="%b\n%Y"
)
Run Code Online (Sandbox Code Playgroud)
如果您想每隔一个月设置一次网格线,只需更改"M1"为"M2"
# imports
import pandas as pd
import plotly.express as px
# data
df = px.data.stocks()
df = df.tail(40)
colors = px.colors.qualitative.T10
# plotly
fig = px.line(df,x = 'date',
y = [c for c in df.columns if c != 'date'],
template = 'plotly_dark',
color_discrete_sequence = colors,
title = 'Stocks',
)
fig.update_xaxes(dtick="M2",
tickformat="%b\n%Y"
)
fig.show()
Run Code Online (Sandbox Code Playgroud)
旧的解决方案:
如何设置网格线完全取决于您想要显示的内容,以及在尝试编辑设置之前如何构建图形。但要获得问题中指定的结果,您可以这样做。
步骤1:
编辑fig['data'][series]['x']中的每个系列fig['data']。
第2步:
在以下位置设置刻度模式和刻度文本:
go.Layout(xaxis = go.layout.XAxis(tickvals = [some_values]
ticktext = [other_values])
)
Run Code Online (Sandbox Code Playgroud)
结果:
Jupyter Notebook 的完整代码:
# imports
import plotly
import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import pandas as pd
import numpy as np
from IPython.display import HTML
from IPython.core.display import display, HTML
import copy
import plotly.graph_objs as go
# setup
init_notebook_mode(connected=True)
np.random.seed(123)
cf.set_config_file(theme='pearl')
#%qtconsole --style vim
# Random data using cufflinks
df = cf.datagen.lines()
# create figure setup
fig = df.iplot(asFigure=True, kind='scatter',
xTitle='Dates',yTitle='Returns',title='Returns')
# create df1 to mess around with while
# keeping the source intact in df
df1 = df.copy(deep = True)
df1['idx'] = range(0, len(df))
# time variable operations and formatting
df1['yr'] = df1.index.year
df1['mth'] = df1.index.month_name()
# function to replace month name with
# abbreviated month name AND year
# if the month is january
def mthFormat(month):
dDict = {'January':'jan','February':'feb', 'March':'mar',
'April':'apr', 'May':'may','June':'jun', 'July':'jul',
'August':'aug','September':'sep', 'October':'oct',
'November':'nov', 'December':'dec'}
mth = dDict[month]
return(mth)
# replace month name with abbreviated month name
df1['mth'] = [mthFormat(m) for m in df1['mth']]
# remove adjacent duplicates for year and month
df1['yr'][df1['yr'].shift() == df1['yr']] = ''
df1['mth'][df1['mth'].shift() == df1['mth']] = ''
# select and format values to be displayed
df1['idx'][df1['mth']!='']
df1['display'] = df1['idx'][df1['mth']!='']
display = df1['display'].dropna()
displayVal = display.values.astype('int')
df_display = df1.iloc[displayVal]
df_display['display'] = df_display['display'].astype('int')
df_display['yrmth'] = df_display['mth'] + '<br>' + df_display['yr'].astype(str)
# set properties for each trace
for ser in range(0,len(fig['data'])):
fig['data'][ser]['x'] = df1['idx'].values.tolist()
fig['data'][ser]['text'] = df1['mth'].values.tolist()
fig['data'][ser]['hoverinfo']='all'
# layout for entire figure
f2Data = fig['data']
f2Layout = go.Layout(
xaxis = go.layout.XAxis(
tickmode = 'array',
tickvals = df_display['display'].values.tolist(),
ticktext = df_display['yrmth'].values.tolist(),
zeroline = False)#,
)
# plot figure with specified major ticks and gridlines
fig2 = go.Figure(data=f2Data, layout=f2Layout)
iplot(fig2)
Run Code Online (Sandbox Code Playgroud)
一些重要的细节:
1. 灵活性和限制iplot():
这种使用iplot()和编辑所有这些设置的方法有点笨拙,但它对于数据集中的列/变量的数量非常灵活,并且可以说比手动构建每个跟踪(如trace1 = go.Scatter()df 中的每一列)更可取。
2. 为什么必须编辑每个系列/迹线?
如果您尝试跳过中间部分
for ser in range(0,len(fig['data'])):
fig['data'][ser]['x'] = df1['idx'].values.tolist()
fig['data'][ser]['text'] = df1['mth'].values.tolist()
fig['data'][ser]['hoverinfo']='all'
Run Code Online (Sandbox Code Playgroud)
并尝试直接在整个图上设置tickvalsand ,它不会有任何效果:ticktext
我认为这有点奇怪,但我认为这是由 . 启动的一些底层设置引起的iplot()。
3.还缺少一件事:
为了使该设置起作用,ticvals和的结构分别ticktext是[0, 31, 59, 90]和['jan<br>2015', 'feb<br>', 'mar<br>', 'apr<br>']。这会导致 x 轴线悬停文本显示数据的位置,其中ticvals和ticktext为空:
任何有关如何改进整个事情的建议都将受到高度赞赏。比我自己的解决方案更好的解决方案将立即收到“已接受答案”状态!