gl3*_*393 1 jdbc avro apache-kafka apache-kafka-connect
我们正在尝试使用 Confluent JDBC Sink 连接器将主题中的值写回 postgres 数据库。
connector.class=io.confluent.connect.jdbc.JdbcSinkConnector
connection.password=xxx
tasks.max=1
topics=topic_name
auto.evolve=true
connection.user=confluent_rw
auto.create=true
connection.url=jdbc:postgresql://x.x.x.x:5432/Datawarehouse
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
Run Code Online (Sandbox Code Playgroud)
我们可以使用以下命令读取控制台中的值:
kafka-avro-console-consumer --bootstrap-server localhost:9092 --topic topic_name
Run Code Online (Sandbox Code Playgroud)
模式存在并且值被正确反序列化,kafka-avro-console-consumer因为它没有给出错误但连接器给出了这些错误:
{
"name": "datawarehouse_sink",
"connector": {
"state": "RUNNING",
"worker_id": "x.x.x.x:8083"
},
"tasks": [
{
"id": 0,
"state": "FAILED",
"worker_id": "x.x.x.x:8083",
"trace": "org.apache.kafka.connect.errors.ConnectException: Tolerance exceeded in error handler\n\tat org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndHandleError(RetryWithToleranceOperator.java:178)\n\tat org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execute(RetryWithToleranceOperator.java:104)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.convertAndTransformRecord(WorkerSinkTask.java:511)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.convertMessages(WorkerSinkTask.java:491)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:322)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:226)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:194)\n\tat org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:175)\n\tat org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:219)\n\tat java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)\n\tat java.util.concurrent.FutureTask.run(FutureTask.java:266)\n\tat java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)\n\tat java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)\n\tat java.lang.Thread.run(Thread.java:748)\nCaused by: org.apache.kafka.connect.errors.DataException: f_machinestate_sink\n\tat io.confluent.connect.avro.AvroConverter.toConnectData(AvroConverter.java:103)\n\tat org.apache.kafka.connect.runtime.WorkerSinkTask.lambda$convertAndTransformRecord$0(WorkerSinkTask.java:511)\n\tat org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndRetry(RetryWithToleranceOperator.java:128)\n\tat org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndHandleError(RetryWithToleranceOperator.java:162)\n\t... 13 more\nCaused by: org.apache.kafka.common.errors.SerializationException: Error deserializing Avro message for id -1\nCaused by: org.apache.kafka.common.errors.SerializationException: Unknown magic byte!\n"
}
],
"type": "sink"
}
Run Code Online (Sandbox Code Playgroud)
最后的错误是:
org.apache.kafka.common.errors.SerializationException: Unknown magic byte!
Run Code Online (Sandbox Code Playgroud)
模式在模式注册表中注册。
问题是否与连接器的配置文件有关?
该错误org.apache.kafka.common.errors.SerializationException: Unknown magic byte!意味着关于该主题的消息不是有效的 Avro 并且无法反序列化。这可能有几个原因:
有些消息是 Avro,但有些则不是。如果是这种情况,您可以使用 Kafka Connect 中的错误处理功能使用如下配置忽略无效消息:
"errors.tolerance": "all",
"errors.log.enable":true,
"errors.log.include.messages":true
Run Code Online (Sandbox Code Playgroud)该值是Avro的,但关键是没有的。如果是这种情况,则使用适当的key.converter.
更多阅读:https : //www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
| 归档时间: |
|
| 查看次数: |
1809 次 |
| 最近记录: |