Mic*_*ael 7 tree recursion functional-programming scala tail-recursion
假设我有一个像这样的树数据结构:
trait Node { val name: String }
case class BranchNode(name: String, children: List[Node]) extends Node
case class LeafNode(name: String) extends Node
Run Code Online (Sandbox Code Playgroud)
假设我还有一个映射叶子的函数:
def mapLeaves(root: Node, f: LeafNode => LeafNode): Node = root match {
case ln: LeafNode => f(ln)
case bn: BranchNode => BranchNode(bn.name, bn.children.map(ch => mapLeaves(ch, f)))
}
Run Code Online (Sandbox Code Playgroud)
现在,我正在尝试使此函数尾部递归,但是很难弄清楚该怎么做。我已经读过这个答案,但仍然不知道使该二叉树解决方案适用于多路树。
您将如何重写mapLeaves以使其尾部递归?
“调用栈”和“递归”只是流行的设计模式,后来被并入大多数编程语言中(因此大部分变为“不可见”)。没有什么可以阻止您使用堆数据结构来重新实现两者。因此,这是“明显的” 1960年代TAOCP复古风格的解决方案:
trait Node { val name: String }
case class BranchNode(name: String, children: List[Node]) extends Node
case class LeafNode(name: String) extends Node
def mapLeaves(root: Node, f: LeafNode => LeafNode): Node = {
case class Frame(name: String, mapped: List[Node], todos: List[Node])
@annotation.tailrec
def step(stack: List[Frame]): Node = stack match {
// "return / pop a stack-frame"
case Frame(name, done, Nil) :: tail => {
val ret = BranchNode(name, done.reverse)
tail match {
case Nil => ret
case Frame(tn, td, tt) :: more => {
step(Frame(tn, ret :: td, tt) :: more)
}
}
}
case Frame(name, done, x :: xs) :: tail => x match {
// "recursion base"
case l @ LeafNode(_) => step(Frame(name, f(l) :: done, xs) :: tail)
// "recursive call"
case BranchNode(n, cs) => step(Frame(n, Nil, cs) :: Frame(name, done, xs) :: tail)
}
case Nil => throw new Error("shouldn't happen")
}
root match {
case l @ LeafNode(_) => f(l)
case b @ BranchNode(n, cs) => step(List(Frame(n, Nil, cs)))
}
}
Run Code Online (Sandbox Code Playgroud)
尾递归step函数采用带有“堆栈框架”的经过优化的堆栈。“堆栈框架”存储当前正在处理的分支节点的名称,已处理的子节点的列表以及以后仍必须处理的其余节点的列表。这大致对应于递归mapLeaves函数的实际堆栈框架。
有了这个数据结构,
Frame对象,或者返回最终结果,或者至少stack缩短一帧。Frame到stackf在叶子上调用)不会创建或删除任何框架一旦了解了如何显式表示通常不可见的堆栈框架,该转换就很简单,而且大多是机械的。
例:
val example = BranchNode("x", List(
BranchNode("y", List(
LeafNode("a"),
LeafNode("b")
)),
BranchNode("z", List(
LeafNode("c"),
BranchNode("v", List(
LeafNode("d"),
LeafNode("e")
))
))
))
println(mapLeaves(example, { case LeafNode(n) => LeafNode(n.toUpperCase) }))
Run Code Online (Sandbox Code Playgroud)
输出(缩进):
BranchNode(x,List(
BranchNode(y,List(
LeafNode(A),
LeafNode(B)
)),
BranchNode(z, List(
LeafNode(C),
BranchNode(v,List(
LeafNode(D),
LeafNode(E)
))
))
))
Run Code Online (Sandbox Code Playgroud)
使用称为trampoline的技术来实现它可能会更容易。如果使用它,您将能够使用两个函数进行相互递归调用(使用tailrec,您只能使用一个函数)。与tailrec此类似,此递归将转换为纯循环。
蹦床是在美国Scala标准库中实现的scala.util.control.TailCalls。
import scala.util.control.TailCalls.{TailRec, done, tailcall}
def mapLeaves(root: Node, f: LeafNode => LeafNode): Node = {
//two inner functions doing mutual recursion
//iterates recursively over children of node
def iterate(nodes: List[Node]): TailRec[List[Node]] = {
nodes match {
case x :: xs => tailcall(deepMap(x)) //it calls with mutual recursion deepMap which maps over children of node
.flatMap(node => iterate(xs).map(node :: _)) //you can flat map over TailRec
case Nil => done(Nil)
}
}
//recursively visits all branches
def deepMap(node: Node): TailRec[Node] = {
node match {
case ln: LeafNode => done(f(ln))
case bn: BranchNode => tailcall(iterate(bn.children))
.map(BranchNode(bn.name, _)) //calls mutually iterate
}
}
deepMap(root).result //unwrap result to plain node
}
Run Code Online (Sandbox Code Playgroud)
相反,TailCalls您也可以使用Evalfrom Cats或Trampolinefrom scalaz。
使用该实现功能可以毫无问题地工作:
def build(counter: Int): Node = {
if (counter > 0) {
BranchNode("branch", List(build(counter-1)))
} else {
LeafNode("leaf")
}
}
val root = build(4000)
mapLeaves(root, x => x.copy(name = x.name.reverse)) // no problems
Run Code Online (Sandbox Code Playgroud)
当我在您的实现中运行该示例时,导致java.lang.StackOverflowError了预期的结果。