PyTorch 数据集:将整个数据集转换为 NumPy

And*_*Fan 4 python numpy pytorch torchvision

我正在尝试将 Torchvision MNIST 训练和测试数据集转换为 NumPy 数组,但找不到实际执行转换的文档。

我的目标是获取整个数据集并将其转换为单个 NumPy 数组,最好不要遍历整个数据集。

我看过如何将 Pytorch Dataloader 转换为 numpy 数组以使用 matplotlib 显示图像数据?但它没有解决我的问题。

所以我的问题是,利用torch.utils.data.DataLoader,我将如何将数据集(训练/测试)转换为两个 NumPy 数组,以便所有示例都存在?

注意:我暂时将批量大小保留为默认值 1;我可以将火车设置为 60,000,测试设置为 10,000,但我宁愿不使用那种幻数。

谢谢你。

dam*_*rom 12

无需使用torch.utils.data.DataLoader此任务。

from torchvision import datasets, transforms

train_set = datasets.MNIST('./data', train=True, download=True)
test_set = datasets.MNIST('./data', train=False, download=True)

train_set_array = train_set.data.numpy()
test_set_array = test_set.data.numpy()
Run Code Online (Sandbox Code Playgroud)

请注意,在这种情况下,目标被排除在外。

  • 没有实际理由将标签包含在同一数据矩阵中。您可以获取运行“train_set_array_targets = train_set.targets.numpy()”的目标的另一个 NumPy 矩阵 (2认同)
  • 这是因为“data”和“targets”不是“Dataset”类的属性,而是“Dataset”子类的“MNIST”类的属性。我会直接查看“torchvision”包的“MNIST”文档,但我认为没有任何内容可以回答这里提出的问题。 (2认同)
  • 但这不包括转换,而接受的答案则包括转换。 (2认同)

And*_*dyK 11

如果我理解正确的话,您希望将整个 MNIST 图像训练数据集(总共 60000 张图像,每个图像的大小为 1x28x28 数组,颜色通道为 1)作为大小为 (60000, 1, 28, 28) 的 numpy 数组?

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Transform to normalized Tensors 
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307,), (0.3081,))])

train_dataset = datasets.MNIST('./MNIST/', train=True, transform=transform, download=True)
# test_dataset = datasets.MNIST('./MNIST/', train=False, transform=transform, download=True)


train_loader = DataLoader(train_dataset, batch_size=len(train_dataset))
# test_loader = DataLoader(test_dataset, batch_size=len(test_dataset))

train_dataset_array = next(iter(train_loader))[0].numpy()
# test_dataset_array = next(iter(test_loader))[0].numpy()
Run Code Online (Sandbox Code Playgroud)

这是结果:

>>> train_dataset_array

array([[[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]],


       [[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]],


       [[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]],


       ...,


       [[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]],


       [[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]],


       [[[-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         ...,
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296],
         [-0.42421296, -0.42421296, -0.42421296, ..., -0.42421296,
          -0.42421296, -0.42421296]]]], dtype=float32)
Run Code Online (Sandbox Code Playgroud)

  • 我假设我可以使用`next(iter(train_loader))[1].numpy()`来获取标签? (3认同)