Clo*_*ine 2 r time-series tidyverse
\n\n我能否获得有关如何将此分布更改为 80% 95% 置信区间的指导?谢谢你!
\n\n您可以使用此处的示例代码来获取发行版
\n\nresult <\xe2\x80\x93USAccDeaths %>% as_tsibble %>% \n model(arima = ARIMA(log(value) ~ pdq(0,1,1) + PDQ(0,1,1)))%>%\n forecast(h=12)\nRun Code Online (Sandbox Code Playgroud)\n
该hilo()函数允许您从预测分布中提取置信区间。它可以用于分布向量或寓言本身。
library(tidyverse)\nlibrary(fable)\nresult <- as_tsibble(USAccDeaths) %>%\n model(arima = ARIMA(log(value) ~ pdq(0,1,1) + PDQ(0,1,1)))%>%\n forecast(h=12)\n\nresult %>% \n mutate(`80%` = hilo(value, 80))\n#> # A fable: 12 x 5 [1M]\n#> # Key: .model [1]\n#> .model index value .mean `80%`\n#> <chr> <mth> <dist> <dbl> <hilo>\n#> 1 arima 1979 Jan t(N(9, 0.0014)) 8290. [ 7899.082, 8689.169]80\n#> 2 arima 1979 Feb t(N(8.9, 0.0018)) 7453. [ 7055.860, 7859.100]80\n#> 3 arima 1979 Mar t(N(9, 0.0022)) 8276. [ 7789.719, 8774.054]80\n#> 4 arima 1979 Apr t(N(9.1, 0.0025)) 8584. [ 8036.304, 9144.752]80\n#> 5 arima 1979 May t(N(9.2, 0.0029)) 9499. [ 8849.860, 10166.302]80\n#> 6 arima 1979 Jun t(N(9.2, 0.0033)) 9900. [ 9180.375, 10639.833]80\n#> 7 arima 1979 Jul t(N(9.3, 0.0037)) 10988. [10145.473, 11857.038]80\n#> 8 arima 1979 Aug t(N(9.2, 0.0041)) 10132. [ 9315.840, 10974.140]80\n#> 9 arima 1979 Sep t(N(9.1, 0.0045)) 9138. [ 8368.585, 9933.124]80\n#> 10 arima 1979 Oct t(N(9.1, 0.0049)) 9391. [ 8567.874, 10243.615]80\n#> 11 arima 1979 Nov t(N(9.1, 0.0052)) 8863. [ 8056.754, 9699.824]80\n#> 12 arima 1979 Dec t(N(9.1, 0.0056)) 9356. [ 8474.732, 10271.739]80\n\nresult %>% \n hilo(level = c(80, 95))\n#> # A tsibble: 12 x 6 [1M]\n#> # Key: .model [1]\n#> .model index value .mean `80%`\n#> <chr> <mth> <dist> <dbl> <hilo>\n#> 1 arima 1979 Jan t(N(9, 0.0014)) 8290. [ 7899.082, 8689.169]80\n#> 2 arima 1979 Feb t(N(8.9, 0.0018)) 7453. [ 7055.860, 7859.100]80\n#> 3 arima 1979 Mar t(N(9, 0.0022)) 8276. [ 7789.719, 8774.054]80\n#> 4 arima 1979 Apr t(N(9.1, 0.0025)) 8584. [ 8036.304, 9144.752]80\n#> 5 arima 1979 May t(N(9.2, 0.0029)) 9499. [ 8849.860, 10166.302]80\n#> 6 arima 1979 Jun t(N(9.2, 0.0033)) 9900. [ 9180.375, 10639.833]80\n#> 7 arima 1979 Jul t(N(9.3, 0.0037)) 10988. [10145.473, 11857.038]80\n#> 8 arima 1979 Aug t(N(9.2, 0.0041)) 10132. [ 9315.840, 10974.140]80\n#> 9 arima 1979 Sep t(N(9.1, 0.0045)) 9138. [ 8368.585, 9933.124]80\n#> 10 arima 1979 Oct t(N(9.1, 0.0049)) 9391. [ 8567.874, 10243.615]80\n#> 11 arima 1979 Nov t(N(9.1, 0.0052)) 8863. [ 8056.754, 9699.824]80\n#> 12 arima 1979 Dec t(N(9.1, 0.0056)) 9356. [ 8474.732, 10271.739]80\n#> # \xe2\x80\xa6 with 1 more variable: `95%` <hilo>\nRun Code Online (Sandbox Code Playgroud)\n要从对象中提取数值<hilo>,您可以使用该unpack_hilo()函数,或使用<hilo>$lower,<hilo>$upper和获取每个部分<hilo>$level。
result %>% \n hilo(level = c(80, 95)) %>% \n unpack_hilo("80%")\n#> # A tsibble: 12 x 7 [1M]\n#> # Key: .model [1]\n#> .model index value .mean `80%_lower` `80%_upper`\n#> <chr> <mth> <dist> <dbl> <dbl> <dbl>\n#> 1 arima 1979 Jan t(N(9, 0.0014)) 8290. 7899. 8689.\n#> 2 arima 1979 Feb t(N(8.9, 0.0018)) 7453. 7056. 7859.\n#> 3 arima 1979 Mar t(N(9, 0.0022)) 8276. 7790. 8774.\n#> 4 arima 1979 Apr t(N(9.1, 0.0025)) 8584. 8036. 9145.\n#> 5 arima 1979 May t(N(9.2, 0.0029)) 9499. 8850. 10166.\n#> 6 arima 1979 Jun t(N(9.2, 0.0033)) 9900. 9180. 10640.\n#> 7 arima 1979 Jul t(N(9.3, 0.0037)) 10988. 10145. 11857.\n#> 8 arima 1979 Aug t(N(9.2, 0.0041)) 10132. 9316. 10974.\n#> 9 arima 1979 Sep t(N(9.1, 0.0045)) 9138. 8369. 9933.\n#> 10 arima 1979 Oct t(N(9.1, 0.0049)) 9391. 8568. 10244.\n#> 11 arima 1979 Nov t(N(9.1, 0.0052)) 8863. 8057. 9700.\n#> 12 arima 1979 Dec t(N(9.1, 0.0056)) 9356. 8475. 10272.\n#> # \xe2\x80\xa6 with 1 more variable: `95%` <hilo>\nRun Code Online (Sandbox Code Playgroud)\n由reprex 包(v0.3.0)于 2020-04-08 创建
\n| 归档时间: |
|
| 查看次数: |
1962 次 |
| 最近记录: |