我想在训练数据集上附加标签,我这样做
def one_hot_label(img):
label = img
if label == 'A':
ohl = np.array([1, 0])
elif label == 'B':
ohl = np.array([0, 1])
return ohl
def train_data_with_label():
train_images = []
for i in tqdm(os.listdir(train_data)):
path_pre = os.path.join(train_data, i)
for img in os.listdir(path_pre):
if img.endswith('.jpg'):
path = os.path.join(path_pre, img)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
train_images.append([np.array(img), one_hot_label(i)])
shuffle(train_images)
return train_images
Run Code Online (Sandbox Code Playgroud)
但是,在Keras上执行输入时返回的错误
training_images = train_data_with_label()
tr_img_data = np.array([i[0] for i in training_images])
tr_lbl_data = np.array([i[1] for i in training_images])
model = Sequential()
model.add(InputLayer(input_shape=(256, 256, 1)))
Run Code Online (Sandbox Code Playgroud)
任何人都可以帮我修复它吗?
您的输入层需要一个 shape 数组,(batch_size, 256, 256, 1)但看起来您正在传递 shape 的数据(batch_size, 256, 256)。您可以尝试按如下方式重塑训练数据:
tr_img_data = np.expand_dims(tr_img_data, axis=-1)
Run Code Online (Sandbox Code Playgroud)