在具有3个y轴的单个图中绘制4条曲线

Ste*_*eve 24 graphics r

我有4组值:y1,y2,y3,y4和一组x.y值具有不同的范围,我需要将它们绘制为单独的曲线,在y轴上具有单独的值集.

简单来说,我需要3个具有不同值(比例)的y轴,以便在同一个图上绘图.

Rgu*_*guy 25

试试这个....

# The data have a common independent variable (x)
x <- 1:10

# Generate 4 different sets of outputs
y1 <- runif(10, 0, 1)
y2 <- runif(10, 100, 150)
y3 <- runif(10, 1000, 2000)
y4 <- runif(10, 40000, 50000)
y <- list(y1, y2, y3, y4)

# Colors for y[[2]], y[[3]], y[[4]] points and axes
colors = c("red", "blue", "green")

# Set the margins of the plot wider
par(oma = c(0, 2, 2, 3))

plot(x, y[[1]], yaxt = "n", xlab = "Common x-axis", main = "A bunch of plots on the same graph", 
     ylab = "")
lines(x, y[[1]])

# We use the "pretty" function go generate nice axes
axis(at = pretty(y[[1]]), side = 2)

# The side for the axes.  The next one will go on 
# the left, the following two on the right side
sides <- list(2, 4, 4) 

# The number of "lines" into the margin the axes will be
lines <- list(2, NA, 2)

for(i in 2:4) {
  par(new = TRUE)
  plot(x, y[[i]], axes = FALSE, col = colors[i - 1], xlab = "", ylab = "")
  axis(at = pretty(y[[i]]), side = sides[[i-1]], line = lines[[i-1]], 
      col = colors[i - 1])
  lines(x, y[[i]], col = colors[i - 1])
}

# Profit.
Run Code Online (Sandbox Code Playgroud)

绘图输出

  • 我对这里展示的R-fu印象深刻,但个人无法从最终产品中做出正面或反面.也许更清楚的是,除了颜色之外还有不同的符号使用.或者它可能只是显示随机数据的产物......无论如何 - 干得好!(1) (2认同)

Cha*_*ase 20

如果你想沿着基本图形学习绘图包的路径,这里有一个ggplot2使用@ Rguy答案的变量的解决方案:

library(ggplot2)
dat <- data.frame(x, y1, y2, y3, y4)

dat.m <- melt(dat, "x")

ggplot(dat.m, aes(x, value, colour = variable)) + geom_line() +
facet_wrap(~ variable, ncol = 1, scales = "free_y") +
scale_colour_discrete(legend = FALSE)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


bil*_*080 15

请尝试以下方法.它并不像它看起来那么复杂.一旦你看到第一个正在构建的图形,你会发现其他图形非常相似.而且,由于有四个相似的图形,您可以轻松地将代码重新配置为一个反复使用的函数来绘制每个图形.但是,由于我通常使用相同的x轴绘制各种图形,因此我需要很多灵活性.所以,我已经决定只复制/粘贴/修改每个图形的代码更容易.

#Generate the data for the four graphs
x <- seq(1, 50, 1)
y1 <- 10*rnorm(50)
y2 <- 100*rnorm(50)
y3 <- 1000*rnorm(50)
y4 <- 10000*rnorm(50)

#Set up the plot area so that multiple graphs can be crammed together
par(pty="m", plt=c(0.1, 1, 0, 1), omd=c(0.1,0.9,0.1,0.9))

#Set the area up for 4 plots
par(mfrow = c(4, 1))

#Plot the top graph with nothing in it =========================
plot(x, y1, xlim=range(x), type="n", xaxt="n", yaxt="n", main="", xlab="", ylab="")
mtext("Four Y Plots With the Same X", 3, line=1, cex=1.5)

#Store the x-axis data of the top plot so it can be used on the other graphs
pardat<-par()
xaxisdat<-seq(pardat$xaxp[1],pardat$xaxp[2],(pardat$xaxp[2]-pardat$xaxp[1])/pardat$xaxp[3])

#Get the y-axis data and add the lines and label
yaxisdat<-seq(pardat$yaxp[1],pardat$yaxp[2],(pardat$yaxp[2]-pardat$yaxp[1])/pardat$yaxp[3])
axis(2, at=yaxisdat, las=2, padj=0.5, cex.axis=0.8, hadj=0.5, tcl=-0.3)
abline(v=xaxisdat, col="lightgray")
abline(h=yaxisdat, col="lightgray")
mtext("y1", 2, line=2.3)
lines(x, y1, col="red")

#Plot the 2nd graph with nothing ================================
plot(x, y2, xlim=range(x), type="n", xaxt="n", yaxt="n", main="", xlab="", ylab="")

#Get the y-axis data and add the lines and label
pardat<-par()
yaxisdat<-seq(pardat$yaxp[1],pardat$yaxp[2],(pardat$yaxp[2]-pardat$yaxp[1])/pardat$yaxp[3])
axis(2, at=yaxisdat, las=2, padj=0.5, cex.axis=0.8, hadj=0.5, tcl=-0.3)
abline(v=xaxisdat, col="lightgray")
abline(h=yaxisdat, col="lightgray")
mtext("y2", 2, line=2.3)
lines(x, y2, col="blue")

#Plot the 3rd graph with nothing =================================
plot(x, y3, xlim=range(x), type="n", xaxt="n", yaxt="n", main="", xlab="", ylab="")

#Get the y-axis data and add the lines and label
pardat<-par()
yaxisdat<-seq(pardat$yaxp[1],pardat$yaxp[2],(pardat$yaxp[2]-pardat$yaxp[1])/pardat$yaxp[3])
axis(2, at=yaxisdat, las=2, padj=0.5, cex.axis=0.8, hadj=0.5, tcl=-0.3)
abline(v=xaxisdat, col="lightgray")
abline(h=yaxisdat, col="lightgray")
mtext("y3", 2, line=2.3)
lines(x, y3, col="green")

#Plot the 4th graph with nothing =================================
plot(x, y4, xlim=range(x), type="n", xaxt="n", yaxt="n", main="", xlab="", ylab="")

#Get the y-axis data and add the lines and label
pardat<-par()
yaxisdat<-seq(pardat$yaxp[1],pardat$yaxp[2],(pardat$yaxp[2]-pardat$yaxp[1])/pardat$yaxp[3])
axis(2, at=yaxisdat, las=2, padj=0.5, cex.axis=0.8, hadj=0.5, tcl=-0.3)
abline(v=xaxisdat, col="lightgray")
abline(h=yaxisdat, col="lightgray")
mtext("y4", 2, line=2.3)
lines(x, y4, col="darkgray")

#Plot the X axis =================================================
axis(1, at=xaxisdat, padj=-1.4, cex.axis=0.9, hadj=0.5, tcl=-0.3)
mtext("X Variable", 1, line=1.5)
Run Code Online (Sandbox Code Playgroud)

下面是四个图的图.

在此输入图像描述

  • + 1这也是一个很好的解决方案.我可能会在某个时候使用它.与将所有点放在完全相同的图表上相比,它的误导性更小. (2认同)