我正在寻找一种获得百分比的方法
df.groupby(['state', 'approved_or_not']).size()
Output:
school_state project_is_approved
AK 0 55
1 290
AL 0 256
1 1506
AR 0 177
1 872
AZ 0 347
1 1800
Run Code Online (Sandbox Code Playgroud)
哪个好,但我想要的是百分比而不是计数.
school_state project_is_approved
AK 0 0.16
1 0.84
AL 0 0.14
1 0.86
Run Code Online (Sandbox Code Playgroud)
我试过了,想不通办法.感谢有人可以提供帮助吗?
SeriesGroupBy.value_counts与参数一起使用normalize=True:
df.groupby('state')['approved_or_not'].value_counts(normalize=True)
Run Code Online (Sandbox Code Playgroud)
样品:
np.random.seed(2019)
L = list('ABC')
df = pd.DataFrame({'state':np.random.choice(L, size=10),
'approved_or_not':np.random.choice([0,1], size=10)})
print (df)
state approved_or_not
0 A 0
1 C 0
2 B 1
3 A 0
4 C 1
5 C 1
6 A 0
7 B 0
8 A 0
9 C 1
Run Code Online (Sandbox Code Playgroud)
a = df.groupby(['state', 'approved_or_not']).size()
print (a)
A 0 4
B 0 1
1 1
C 0 1
1 3
dtype: int64
a = df.groupby('state')['approved_or_not'].value_counts(normalize=True)
print (a)
state approved_or_not
A 0 1.00
B 0 0.50
1 0.50
C 1 0.75
0 0.25
Name: approved_or_not, dtype: float64
Run Code Online (Sandbox Code Playgroud)
编辑:您可以通过划分Series.div与sum每一级state:
a = df.groupby(['state', 'approved_or_not']).size()
a = a.div(a.sum(level=0), level=0)
print (a)
state approved_or_not
A 0 1.00
B 0 0.50
1 0.50
C 0 0.25
1 0.75
dtype: float64
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
76 次 |
| 最近记录: |