vis*_*dav 2 python machine-learning pandas one-hot-encoding
我正在尝试使用示例数据帧:
data = [['Alex','USA',0],['Bob','India',1],['Clarke','SriLanka',0]]
df = pd.DataFrame(data,columns=['Name','Country','Traget'])
Run Code Online (Sandbox Code Playgroud)
现在,我使用 get_dummies 将字符串列转换为整数:
column_names=['Name','Country']
one_hot = pd.get_dummies(df[column_names])
Run Code Online (Sandbox Code Playgroud)
转换后的列是: Age,Name_Alex,Name_Bob,Name_Clarke,Country_India,Country_SriLanka,Country_USA
x=df[["Name_Alex","Name_Bob","Name_Clarke","Country_India","Country_SriLanka","Country_USA"]].values
y=df['Age'].values
Run Code Online (Sandbox Code Playgroud)
from sklearn.cross_validation import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=float(0.5),random_state=0)
Run Code Online (Sandbox Code Playgroud)
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(x_train, y_train)
Run Code Online (Sandbox Code Playgroud)
现在,模型被训练。
对于预测,假设我想通过给出“名称”和“国家”来预测“目标”。
像:[“亚历克斯”,“美国”]。
如果我使用这个:
logreg.predict([["Alex","USA"]).
Run Code Online (Sandbox Code Playgroud)
显然它不会工作。
小智 6
我建议你使用 sklearn 标签编码器和一个热编码器包而不是 pd.get_dummies。
一旦您为每个特征初始化了标签编码器和一个热编码器,然后将其保存在某处,这样当您想对数据进行预测时,您可以轻松导入保存的标签编码器和一个热编码器并再次对您的特征进行编码。
通过这种方式,您可以像制作训练集时一样,再次对您的特征进行编码。
以下是我用于保存编码器的代码:
labelencoder_dict = {}
onehotencoder_dict = {}
X_train = None
for i in range(0, X.shape[1]):
label_encoder = LabelEncoder()
labelencoder_dict[i] = label_encoder
feature = label_encoder.fit_transform(X[:,i])
feature = feature.reshape(X.shape[0], 1)
onehot_encoder = OneHotEncoder(sparse=False)
feature = onehot_encoder.fit_transform(feature)
onehotencoder_dict[i] = onehot_encoder
if X_train is None:
X_train = feature
else:
X_train = np.concatenate((X_train, feature), axis=1)
Run Code Online (Sandbox Code Playgroud)
现在我保存这个 onehotencoder_dict 和标签 encoder_dict 并在以后使用它进行编码。
def getEncoded(test_data,labelencoder_dict,onehotencoder_dict):
test_encoded_x = None
for i in range(0,test_data.shape[1]):
label_encoder = labelencoder_dict[i]
feature = label_encoder.transform(test_data[:,i])
feature = feature.reshape(test_data.shape[0], 1)
onehot_encoder = onehotencoder_dict[i]
feature = onehot_encoder.transform(feature)
if test_encoded_x is None:
test_encoded_x = feature
else:
test_encoded_x = np.concatenate((test_encoded_x, feature), axis=1)
return test_encoded_x
Run Code Online (Sandbox Code Playgroud)