cal*_*Guy 7 python merge pandas
我有 2 个数据框,我想将它们合并到一个公共列上。但是,我想合并的列不是同一个字符串,而是一个字符串包含在另一个字符串中,如下所示:
import pandas as pd
df1 = pd.DataFrame({'column_a':['John','Michael','Dan','George', 'Adam'], 'column_common':['code','other','ome','no match','word']})
df2 = pd.DataFrame({'column_b':['Smith','Cohen','Moore','K', 'Faber'], 'column_common':['some string','other string','some code','this code','word']})
Run Code Online (Sandbox Code Playgroud)
我想要的结果d1.merge(d2, ...)如下:
column_a | column_b
----------------------
John | Moore <- merged on 'code' contained in 'some code'
Michael | Cohen <- merged on 'other' contained in 'other string'
Dan | Smith <- merged on 'ome' contained in 'some string'
George | n/a
Adam | Faber <- merged on 'word' contained in 'word'
Run Code Online (Sandbox Code Playgroud)
Pet*_*ler 10
这是一种基于 pandas/numpy 的方法。
rhs = (df1.column_common
.apply(lambda x: df2[df2.column_common.str.find(x).ge(0)]['column_b'])
.bfill(axis=1)
.iloc[:, 0])
(pd.concat([df1.column_a, rhs], axis=1, ignore_index=True)
.rename(columns={0: 'column_a', 1: 'column_b'}))
column_a column_b
0 John Moore
1 Michael Cohen
2 Dan Smith
3 George NaN
4 Adam Faber
Run Code Online (Sandbox Code Playgroud)
这是左连接行为的解决方案,因为它不保留与column_a任何值都不匹配的值column_b。这比上面的 numpy/pandas 解决方案慢,因为它使用两个嵌套iterrows循环来构建 python 列表。
tups = [(a1, a2) for i, (a1, b1) in df1.iterrows()
for j, (a2, b2) in df2.iterrows()
if b1 in b2]
(pd.DataFrame(tups, columns=['column_a', 'column_b'])
.drop_duplicates('column_a')
.reset_index(drop=True))
column_a column_b
0 John Moore
1 Michael Cohen
2 Dan Smith
3 Adam Faber
Run Code Online (Sandbox Code Playgroud)