atl*_*las 5 python pandas pandas-groupby
我有一个有趣的!我试图找到一个重复的问题,但没有成功......
我的数据框由 2013-2016 年的所有美国和领土组成,具有多个属性。
>>> df.head(2)
state enrollees utilizing enrol_age65 util_age65 year
1 Alabama 637247 635431 473376 474334 2013
2 Alaska 30486 28514 21721 20457 2013
>>> df.tail(2)
state enrollees utilizing enrol_age65 util_age65 year
214 Puerto Rico 581861 579514 453181 450150 2016
215 U.S. Territories 24329 16979 22608 15921 2016
Run Code Online (Sandbox Code Playgroud)
我想按年份和州分组,并显示每年的前 3 个州(按“登记者”或“利用”-无关紧要)。
期望输出:
enrollees utilizing
year state
2013 California 3933310 3823455
New York 3133980 3002948
Florida 2984799 2847574
...
2016 California 4516216 4365896
Florida 4186823 3984756
New York 4009829 3874682
Run Code Online (Sandbox Code Playgroud)
到目前为止,我已经尝试了以下方法:
df.groupby(['year','state'])['enrollees','utilizing'].sum().head(3)
这仅产生 GroupBy 对象中的前 3 行:
enrollees utilizing
year state
2013 Alabama 637247 635431
Alaska 30486 28514
Arizona 707683 683273
Run Code Online (Sandbox Code Playgroud)
我也试过一个 lambda 函数:
df.groupby(['year','state'])['enrollees','utilizing']\
.apply(lambda x: np.sum(x)).nlargest(3, 'enrollees')
Run Code Online (Sandbox Code Playgroud)
这产生了 GroupBy 对象中绝对最大的 3:
enrollees utilizing
year state
2016 California 4516216 4365896
2015 California 4324304 4191704
2014 California 4133532 4011208
Run Code Online (Sandbox Code Playgroud)
我认为这可能与 GroupBy 对象的索引有关,但我不确定......任何指导将不胜感激!
好吧,你可以做一些不那么漂亮的事情。
首先使用以下方法获取独特年份的列表set():
years_list = list(set(df.year))
Run Code Online (Sandbox Code Playgroud)
创建一个虚拟数据框和一个函数来连接我过去所做的:
def concatenate_loop_dfs(df_temp, df_full, axis=0):
"""
to avoid retyping the same line of code for every df.
the parameters should be the temporary df created at each loop and the concatenated DF that will contain all
values which must first be initialized (outside the loop) as df_name = pd.DataFrame(). """
if df_full.empty:
df_full = df_temp
else:
df_full = pd.concat([df_full, df_temp], axis=axis)
return df_full
Run Code Online (Sandbox Code Playgroud)
创建虚拟最终 df
df_final = pd.DataFrame()
Run Code Online (Sandbox Code Playgroud)
现在您将循环每年并连接到新的 DF:
for year in years_list:
# The query function does a search for where
# the @year means the external variable, in this case the input from loop
# then you'll have a temporary DF with only the year and sorting and getting top3
df2 = df.query("year == @year")
df_temp = df2.groupby(['year','state'])['enrollees','utilizing'].sum().sort_values(by="enrollees", ascending=False).head(3)
# finally you'll call our function that will keep concating the tmp DFs
df_final = concatenate_loop_dfs(df_temp, df_final)
Run Code Online (Sandbox Code Playgroud)
并做了。
print(df_final)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1657 次 |
| 最近记录: |