来自OneHotEncoder的功能名称

Sup*_*dar 11 python-3.x scikit-learn one-hot-encoding

我正在使用OneHotEncoder编码一些分类变量(例如-Sex和AgeGroup)。编码器产生的特征名称类似-'x0_female','x0_male','x1_0.0','x1_15.0'等。

>>> train_X = pd.DataFrame({'Sex':['male', 'female']*3, 'AgeGroup':[0,15,30,45,60,75]})

>>> from sklearn.preprocessing import OneHotEncoder
>>> encoder = OneHotEncoder()
>>> train_X_encoded = encoder.fit_transform(train_X[['Sex', 'AgeGroup']])
Run Code Online (Sandbox Code Playgroud)
>>> encoder.get_feature_names()
>>> array(['x0_female', 'x0_male', 'x1_0.0', 'x1_15.0', 'x1_30.0', 'x1_45.0',
       'x1_60.0', 'x1_75.0'], dtype=object)
Run Code Online (Sandbox Code Playgroud)

有没有办法告诉OneHotEncoder创建特征名称的方式,即在列开头添加列名称,类似于-Sex_female,AgeGroup_15.0等,类似于Pandas get_dummies()所做的。

kab*_*kov 14

您可以将具有原始列名的列表传递给get_feature_names

encoder.get_feature_names(['Sex', 'AgeGroup'])
Run Code Online (Sandbox Code Playgroud)

将返回:

['Sex_female', 'Sex_male', 'AgeGroup_0', 'AgeGroup_15',
 'AgeGroup_30', 'AgeGroup_45', 'AgeGroup_60', 'AgeGroup_75']
Run Code Online (Sandbox Code Playgroud)


Nur*_*aaz 6

column_name = encoder.get_feature_names(['Sex', 'AgeGroup'])
one_hot_encoded_frame =  pd.DataFrame(train_X_encoded, columns= column_name)
Run Code Online (Sandbox Code Playgroud)