Gia*_*chi 3 python keras tensorflow tensorflow-datasets
我已经将图像数据库转换为两个TFRecords,一个用于训练,另一个用于验证。我想使用这两个文件为数据输入keras训练一个简单的模型,但是出现了我无法理解的与数据形状有关的错误。
这是代码(所有大写字母的变量在其他地方定义):
def _parse_function(proto):
f = {
"x": tf.FixedLenSequenceFeature([IMG_SIZE[0] * IMG_SIZE[1]], tf.float32, default_value=0., allow_missing=True),
"label": tf.FixedLenSequenceFeature([1], tf.int64, default_value=0, allow_missing=True)
}
parsed_features = tf.parse_single_example(proto, f)
x = tf.reshape(parsed_features['x'] / 255, (IMG_SIZE[0], IMG_SIZE[1], 1))
y = tf.cast(parsed_features['label'], tf.float32)
return x, y
def load_dataset(input_path, batch_size, shuffle_buffer):
dataset = tf.data.TFRecordDataset(input_path)
dataset = dataset.shuffle(shuffle_buffer).repeat() # shuffle and repeat
dataset = dataset.map(_parse_function, num_parallel_calls=16)
dataset = dataset.batch(batch_size).prefetch(1) # batch and prefetch
return dataset.make_one_shot_iterator()
train_iterator = load_dataset(TRAIN_TFRECORDS, BATCH_SIZE, SHUFFLE_BUFFER)
val_iterator = load_dataset(VALIDATION_TFRECORDS, BATCH_SIZE, SHUFFLE_BUFFER)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(IMG_SIZE[0], IMG_SIZE[1], 1)))
model.add(tf.keras.layers.Dense(1, 'sigmoid'))
model.compile(
optimizer=tf.train.AdamOptimizer(),
loss='binary_crossentropy',
metrics=['accuracy']
)
model.fit(
train_iterator,
epochs=N_EPOCHS,
steps_per_epoch=N_TRAIN // BATCH_SIZE,
validation_data=val_iterator,
validation_steps=N_VALIDATION // BATCH_SIZE
)
Run Code Online (Sandbox Code Playgroud)
这是我得到的错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: data[0].shape = [3] does not start with indices[0].shape = [2]
[[Node: training/TFOptimizer/gradients/loss/dense_loss/Mean_grad/DynamicStitch = DynamicStitch[N=2, T=DT_INT32, _class=["loc:@training/TFOptimizer/gradients/loss/dense_loss/Mean_grad/floordiv"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](training/TFOptimizer/gradients/loss/dense_loss/Mean_grad/range, training/TFOptimizer/gradients/loss/dense_loss/Mean_3_grad/Maximum, training/TFOptimizer/gradients/loss/dense_loss/Mean_grad/Shape/_35, training/TFOptimizer/gradients/loss/dense_loss/Mean_3_grad/Maximum/_41)]]
Run Code Online (Sandbox Code Playgroud)
(我知道这里定义的模型不是用于图像分析的好模型,我只是采用了最简单的架构来重现错误)
更改:
"label": tf.FixedLenSequenceFeature([1]...
Run Code Online (Sandbox Code Playgroud)
变成:
"label": tf.FixedLenSequenceFeature([]...
Run Code Online (Sandbox Code Playgroud)
不幸的是,这在网站的文档中没有解释,但是可以在github 的文档字符串中找到一些解释FixedLenSequenceFeature。基本上,如果您的数据由一个维度(加上一个批次维度)组成,则无需指定它。