Amp*_*Amp 7 python autoencoder deep-learning keras
我正在学习卷积自动编码器,并且正在使用 keras 构建图像降噪器。以下代码适用于构建模型:
denoiser.add(Conv2D(32, (3,3), input_shape=(28,28,1), padding='same'))
denoiser.add(Activation('relu'))
denoiser.add(MaxPooling2D(pool_size=(2,2)))
denoiser.add(Conv2D(16, (3,3), padding='same'))
denoiser.add(Activation('relu'))
denoiser.add(MaxPooling2D(pool_size=(2,2)))
denoiser.add(Conv2D(8, (3,3), padding='same'))
denoiser.add(Activation('relu'))
################## HEY WHAT NO MAXPOOLING?
denoiser.add(Conv2D(8, (3,3), padding='same'))
denoiser.add(Activation('relu'))
denoiser.add(UpSampling2D((2,2)))
denoiser.add(Conv2D(16, (3,3), padding='same'))
denoiser.add(Activation('relu'))
denoiser.add(UpSampling2D((2,2)))
denoiser.add(Conv2D(1, (3,3), padding='same'))
denoiser.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
denoiser.summary()
Run Code Online (Sandbox Code Playgroud)
并给出以下总结:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_155 (Conv2D) (None, 28, 28, 32) 320
_________________________________________________________________
activation_162 (Activation) (None, 28, 28, 32) 0
_________________________________________________________________
max_pooling2d_99 (MaxPooling (None, 14, 14, 32) 0
_________________________________________________________________
conv2d_156 (Conv2D) (None, 14, 14, 16) 4624
_________________________________________________________________
activation_163 (Activation) (None, 14, 14, 16) 0
_________________________________________________________________
max_pooling2d_100 (MaxPoolin (None, 7, 7, 16) 0
_________________________________________________________________
conv2d_157 (Conv2D) (None, 7, 7, 8) 1160
_________________________________________________________________
activation_164 (Activation) (None, 7, 7, 8) 0
_________________________________________________________________
conv2d_158 (Conv2D) (None, 7, 7, 8) 584
_________________________________________________________________
activation_165 (Activation) (None, 7, 7, 8) 0
_________________________________________________________________
up_sampling2d_25 (UpSampling (None, 14, 14, 8) 0
_________________________________________________________________
conv2d_159 (Conv2D) (None, 14, 14, 16) 1168
_________________________________________________________________
activation_166 (Activation) (None, 14, 14, 16) 0
_________________________________________________________________
up_sampling2d_26 (UpSampling (None, 28, 28, 16) 0
_________________________________________________________________
conv2d_160 (Conv2D) (None, 28, 28, 1) 145
=================================================================
Total params: 8,001
Trainable params: 8,001
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
我不知道怎么样MaxPooling2D,Conv2D,UpSampling2D输出大小进行计算。我已经阅读了 keras 文档,但我仍然感到困惑。有很多参数会影响输出形状,例如Conv2D 图层stride或padding用于 Conv2D 层,我不知道它究竟如何影响输出形状。
我不明白为什么MaxPooling2D注释行之前没有图层。编辑代码以convmodel3.add(MaxPooling2D(pool_size=(2,2)))在注释上方包含一个图层,它将最终输出形状变为 (None, 12, 12, 1)
编辑代码以convmodel3.add(MaxPooling2D(pool_size=(2,2)))在注释前包含一个图层,然后convmodel3.add(UpSampling2D((2,2)))将最终输出变为 (None, 24, 24, 1)。这不应该是 (None, 28, 28, 1) 吗?代码和总结:
convmodel3 = Sequential()
convmodel3.add(Conv2D(32, (3,3), input_shape=(28,28,1), padding='same'))
convmodel3.add(Activation('relu'))
convmodel3.add(MaxPooling2D(pool_size=(2,2)))
convmodel3.add(Conv2D(16, (3,3), padding='same'))
convmodel3.add(Activation('relu'))
convmodel3.add(MaxPooling2D(pool_size=(2,2)))
convmodel3.add(Conv2D(8, (3,3), padding='same'))
convmodel3.add(Activation('relu'))
convmodel3.add(MaxPooling2D(pool_size=(2,2))) # ADDED MAXPOOL
################## HEY WHAT NO MAXPOOLING?
convmodel3.add(UpSampling2D((2,2))) # ADDED UPSAMPLING
convmodel3.add(Conv2D(16, (3,3), padding='same'))
convmodel3.add(Activation('relu'))
convmodel3.add(UpSampling2D((2,2)))
convmodel3.add(Conv2D(32, (3,3), padding='same'))
convmodel3.add(Activation('relu'))
convmodel3.add(UpSampling2D((2,2)))
convmodel3.add(Conv2D(1, (3,3), padding='same'))
convmodel3.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
convmodel3.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_247 (Conv2D) (None, 28, 28, 32) 320
_________________________________________________________________
activation_238 (Activation) (None, 28, 28, 32) 0
_________________________________________________________________
max_pooling2d_141 (MaxPoolin (None, 14, 14, 32) 0
_________________________________________________________________
conv2d_248 (Conv2D) (None, 14, 14, 16) 4624
_________________________________________________________________
activation_239 (Activation) (None, 14, 14, 16) 0
_________________________________________________________________
max_pooling2d_142 (MaxPoolin (None, 7, 7, 16) 0
_________________________________________________________________
conv2d_249 (Conv2D) (None, 7, 7, 8) 1160
_________________________________________________________________
activation_240 (Activation) (None, 7, 7, 8) 0
_________________________________________________________________
max_pooling2d_143 (MaxPoolin (None, 3, 3, 8) 0
_________________________________________________________________
up_sampling2d_60 (UpSampling (None, 6, 6, 8) 0
_________________________________________________________________
conv2d_250 (Conv2D) (None, 6, 6, 16) 1168
_________________________________________________________________
activation_241 (Activation) (None, 6, 6, 16) 0
_________________________________________________________________
up_sampling2d_61 (UpSampling (None, 12, 12, 16) 0
_________________________________________________________________
conv2d_251 (Conv2D) (None, 12, 12, 32) 4640
_________________________________________________________________
activation_242 (Activation) (None, 12, 12, 32) 0
_________________________________________________________________
up_sampling2d_62 (UpSampling (None, 24, 24, 32) 0
_________________________________________________________________
conv2d_252 (Conv2D) (None, 24, 24, 1) 289
=================================================================
Total params: 12,201
Trainable params: 12,201
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
None在输出形状中有什么意义?
此外,编辑Conv2D图层以不包含填充,会引发错误:
ValueError: Negative dimension size caused by subtracting 3 from 2 for 'conv2d_240/convolution' (op: 'Conv2D') with input shapes: [?,2,2,16], [3,3,16,32].
为什么?
对于卷积(此处为 2D)层,要考虑的重点是图像的体积(宽度 x 高度 x 深度)以及您为其提供的四个参数。这些参数是
输出形状的公式为
这是从该线程中获取的 tf.nn.conv2d() 对输入张量形状的影响是什么?,以及有关零填充等的更多信息可以在那里找到。
对于 maxpooling 和 upsampling,大小仅受池大小和步幅的影响。在您的示例中,您的池大小为 (2,2) 且未定义步幅(因此默认为池大小,请参见此处https://keras.io/layers/pooling/)。上采样的工作原理相同。池大小只需要一个 2x2 像素的池,找到它们的总和并将它们放入一个像素中。因此将 2x2 像素转换为 1x1 像素,对其进行编码。上采样是同一件事,但不是对像素值求和,而是在池中重复这些值。
您没有 maxpooling 层以及图像尺寸在您的情况下混乱的原因是由于该阶段的图像大小。查看网络,图像尺寸已经是[7,7,8]。池大小和步长分别为 (2,2) 和 2,这会将图像的分辨率降低到 [3,3,8]。在上采样层之后,维度将从 3 -> 6 -> 12 -> 24 开始,每行和每列都丢失了 4 个像素。
None 的重要性(如果我错了,请纠正我,我不是 100% 确定)是由于网络通常在卷积层期望多个图像。通常预期的维度为
[Number of images, Width, Height, Depth]
Run Code Online (Sandbox Code Playgroud)
因此,第一个元素被指定为 none 的原因是您的网络一次只期望一个图像,因此它被指定为 None (同样,我对这一点非常不确定)。
| 归档时间: |
|
| 查看次数: |
6324 次 |
| 最近记录: |