我的实验由两个因素组成,一是受试者之间的因素,一是受试者内部的因素。Age
是受试者间因素,有两个水平:(低和高)。Time
是受试者内因素,包含三个级别:1、4、5。dv
是我的因变量,id
是每个参与者的标识符。我附上了 6 位第一批参与者的数据。
我使用 R 进行了方差分析,对这两个因素都产生了显着的结果。我有两个计划对比:
在时间 1 中,我想比较两个年龄组(低与高)。即对象之间的比较。
在年龄较低的情况下,我想比较时间 1 和时间 5。即对象内比较。
当然,我可以执行 t 检验,但这似乎不合适,因为我可以将我的标准误差估计基于此处的更多单元格。我的问题是如何进行上述对比,以及适当的自由度是多少?
structure(list(id = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L), .Label = c("1", "2", "3", "5", "6",
"7", "8", "11", "12", "13", "15", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "27", "28", "29", "31", "32", "34", "35",
"36", "37", "38", "39", "40", "42", "43", "44", "45", "46", "47",
"48", "49", "52", "53", "54", "55", "56", "58", "59", "60", "62",
"63", "64", "66", "67", "68", "69", "70", "71", "72", "73", "74",
"75", "77", "79", "80", "81", "83", "84", "85", "86", "87", "88",
"89", "90", "91", "92", "93", "94", "96", "97", "98", "99", "100",
"101", "102", "103", "104", "105", "106", "107", "108", "109",
"110", "111", "112", "113", "114", "115", "116", "117", "118",
"119", "120", "121", "122", "123", "124", "125", "126", "127",
"128", "129", "130", "132", "133", "134", "135", "136", "137",
"138", "139", "140", "142", "143", "144", "145", "146", "147",
"148", "149", "150", "151", "152", "153", "154", "156", "157",
"158", "159", "160", "161", "162", "163", "165", "166", "167",
"168", "169", "171", "172", "174", "175", "176", "177", "178",
"179", "180", "181", "182", "183", "184", "185", "186", "187",
"188", "189", "190", "191", "192", "193", "194", "195", "196",
"200", "201", "202", "203", "204", "205", "206", "208", "209",
"210", "212", "213", "214", "215", "216", "217", "218", "219",
"220", "222", "223", "224", "226", "228", "230", "231", "232",
"233", "234", "236", "237", "238", "239", "240", "241", "242",
"243", "244", "246", "247", "248", "249", "250", "251", "252",
"253", "254", "255", "256", "257", "258", "260", "261", "262",
"263", "266", "267", "269", "270", "271", "272", "273", "274",
"275", "276", "277", "278", "279", "280", "281", "282", "283",
"284", "285", "286", "287", "288", "289", "290", "291", "292",
"293", "294", "295", "296", "298", "299", "300"), class = "factor"),
age = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L), .Label = c("high", "low"), class = "factor"),
time = structure(c(3L, 3L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 2L,
1L, 1L, 3L, 3L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 2L, 1L, 1L, 3L,
3L, 2L, 2L, 1L, 1L), .Label = c("1", "4", "5"), class = "factor"),
dv = c(104, 102, 104, 103, 104, 104, 102, 102, 102, 102,
106, 106, 106, 106, 107, 107, 106, 106, 106, 107, 105, 104,
106, 107, 104, 101, 104, 101, 104, 106)), row.names = c(NA,
-30L), class = c("tbl_df", "tbl", "data.frame"))
Run Code Online (Sandbox Code Playgroud)
加载lme4
适合多级模型(重复测量方差分析的替代方法)的包,并且emmeans
可以进行对比。
library(lme4)\nlibrary(emmeans)\n
Run Code Online (Sandbox Code Playgroud)\n\n这适合一个模型,其中 是dv
通过交互作用预测的(R 自动填充主效应),加上随机截距和time
\xe2\x80\x94 的随机效应,两者都嵌套在 中id
。dat
是我从dput
你的帖子中保存的内容。
mod <- lmer(dv ~ age * time + (1 + time | id), dat)\n
Run Code Online (Sandbox Code Playgroud)\n\n对比令人困惑,我总是担心自己会弄错。所以我们可以用来emmeans
找到它们。我们可以拟合一个对象,它获取和emmeans
的每个组合的值:time
age
emm_mod <- emmeans(mod, ~ time + age)\n
Run Code Online (Sandbox Code Playgroud)\n\n我们想要的对比是结果中的第三个和第十四个pairs()
(您自己运行它看看它是什么样子)。coef()
您可以通过放置物体周围来获得您想要的特定对比度pairs()
。您只需要两列\xe2\x80\x943rd 和 14th:
(contr_mat <- coef(pairs(emm_mod))[, c("c.3", "c.14")])\n
Run Code Online (Sandbox Code Playgroud)\n\n返回:
\n\n c.3 c.14\n1,high 1 0\n4,high 0 0\n5,high 0 0\n1,low -1 1\n4,low 0 0\n5,low 0 -1\n
Run Code Online (Sandbox Code Playgroud)\n\n您可以通过在 中指定这两个对比来重点关注它们contr
。您还可以使用您选择的 p 值调整来调整以adjust
任何 \xe2\x80\x94I\ 开头"holm"
:
emmeans(mod, ~ time + age, contr = contr_mat, adjust = "holm")\n
Run Code Online (Sandbox Code Playgroud)\n\n该contrasts
位将为您提供您感兴趣的 p 值:
$emmeans\n time age emmean SE df lower.CL upper.CL\n 1 high 106.2500 0.6518719 3 104.1755 108.3245\n 4 high 105.7500 0.8544406 3 103.0308 108.4692\n 5 high 106.2500 0.4759431 3 104.7353 107.7647\n 1 low 105.0000 0.5322511 3 103.3061 106.6939\n 4 low 102.6667 0.6976478 3 100.4464 104.8869\n 5 low 102.5000 0.3886059 3 101.2633 103.7367\n\nDegrees-of-freedom method: kenward-roger \nConfidence level used: 0.95 \n\n$contrasts\n contrast estimate SE df t.ratio p.value\n c.3 1.25 0.8415630 3 1.485 0.2341\n c.14 2.50 0.7104068 3 3.519 0.0779\n\nP value adjustment: holm method for 2 tests \n
Run Code Online (Sandbox Code Playgroud)\n\n您还可以尝试adjust = "none"
:
> emmeans(mod, ~ time + age, contr = contr_mat, adjust = "none")$contrasts\n contrast estimate SE df t.ratio p.value\n c.3 1.25 0.8415630 3 1.485 0.2341\n c.14 2.50 0.7104068 3 3.519 0.0389\n
Run Code Online (Sandbox Code Playgroud)\n