Ric*_*loo 7 r matrix adjacency-matrix
我有一个DataFrame , df.
n是一列,表示列中的组数x.
x是包含逗号分隔组的列.
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
> df
n x
2 a, b
3 a, c, d
2 c, d
2 d, b
Run Code Online (Sandbox Code Playgroud)
df$x元素表示每个组一起出现的次数df$x.输出应如下所示:
m <- matrix(c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0), nrow = 4, ncol = 4)
rownames(m) <- letters[1:4]; colnames(m) <- letters[1:4]
> m
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
Run Code Online (Sandbox Code Playgroud)
这是一个非常粗略,可能非常低效的解决方案,tidyverse用于争论和combinat生成排列.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
Run Code Online (Sandbox Code Playgroud)
使用Base R,您可以执行以下操作
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
Run Code Online (Sandbox Code Playgroud)