获得接近2次幂的快速方法(浮点数)

gez*_*eza 6 c++ floating-point x86 ieee-754

在数值计算中,通常需要将数字缩放到安全范围内.

例如,计算欧几里德距离:sqrt(a^2+b^2).在这里,如果幅度a还是b过小/大,则溢/上溢可能发生.

解决此问题的常用方法是将数字除以最大幅度数.但是,这个解决方案是:

  • 慢(分裂很慢)
  • 造成一点额外的不准确

所以我认为不是除以最大幅度数,而是将它乘以一个接近2次幂的倒数.这似乎是一个更好的解决方案,如:

  • 乘法比除法快得多
  • 准确度更高,因为乘以2的幂是精确的

所以,我想创建一个小实用程序函数,它有一个像这样的逻辑(通过^,我的意思是取幂):

void getScaler(double value, double &scaler, double &scalerReciprocal) {
    int e = <exponent of value>;
    if (e<-1022) { scaler=2^-1022; scalerReciprocal = 2^1022; }
    } else if (e>1022) { scaler=2^1022; scalerReciprocal = 2^-1022; }
    } else { scaler=2^e; scalerReciprocal = 2^(2046-e); }
}
Run Code Online (Sandbox Code Playgroud)

这个函数应该返回一个标准化的scaler&scalerReciprocal,两个都是2的幂数,scaler它接近于value,并且scalerReciprocal是它的倒数scaler.

为最大允许指数scaler/ scaleReciprocal-1022..1022(我不想用低于正常工作scaler,为次正规数可能会很慢).

什么是快速的方法呢?这可以通过纯浮点运算来完成吗?或者我应该从中提取指数value,并使用简单的ifs来执行逻辑?是否有某种技巧与( - )1022快速比较(因为范围是对称的)?

注意:scaler不需要是最接近的2次幂.如果某些逻辑需要它,scaler可以是距离最接近值的2的小功率.

wim*_*wim 7

功能s = get_scale(z)计算"2的近距离".由于分数位s 为零,因此倒数s只是一个(廉价)整数减法:见函数inv_of_scale.

在x86上get_scaleinv_of_scale使用clang编译为非常高效的程序集.编译器clang翻译三元运算符,minsdmaxsd参见Peter Cordes的评论.使用gcc,将这些函数转换为x86内在函数代码(get_scale_x86inv_of_scale_x86)的效率稍高,请参阅Godbolt.

请注意,C显式允许通过联合进行类型惩罚,而C++(c ++ 11)没有这样的权限 虽然gcc 8.2和clang 7.0不会抱怨联合,但是你可以通过使用memcpy技巧而不是使用技巧来改进C++ .联盟技巧.代码的这种修改应该是微不足道的.代码应该正确处理子正规.

#include<stdio.h>
#include<stdint.h>
#include<immintrin.h>
/* gcc -Wall -m64 -O3 -march=sandybridge dbl_scale.c */

union dbl_int64{
    double d;
    uint64_t i;
};

double get_scale(double t){
    union dbl_int64 x;
    union dbl_int64 x_min;
    union dbl_int64 x_max;
    uint64_t mask_i;
           /* 0xFEDCBA9876543210 */
    x_min.i = 0x0010000000000000ull;
    x_max.i = 0x7FD0000000000000ull;
    mask_i =  0x7FF0000000000000ull;
    x.d = t;
    x.i = x.i & mask_i;                    /* Set fraction bits to zero, take absolute value */
    x.d = (x.d < x_min.d) ? x_min.d : x.d; /* If subnormal: set exponent to 1                */
    x.d = (x.d > x_max.d) ? x_max.d : x.d; /* If exponent is very large: set exponent to 7FD, otherwise the inverse is a subnormal */
    return x.d;
}

double get_scale_x86(double t){
    __m128d x = _mm_set_sd(t);
    __m128d x_min = _mm_castsi128_pd(_mm_set1_epi64x(0x0010000000000000ull));
    __m128d x_max = _mm_castsi128_pd(_mm_set1_epi64x(0x7FD0000000000000ull));
    __m128d mask  = _mm_castsi128_pd(_mm_set1_epi64x(0x7FF0000000000000ull));
            x     = _mm_and_pd(x, mask);
            x     = _mm_max_sd(x, x_min);
            x     = _mm_min_sd(x, x_max);
    return _mm_cvtsd_f64(x);
}

/* Compute the inverse 1/t of a double t with all zero fraction bits     */
/* and exponent between the limits of function get_scale                 */
/* A single integer subtraction is much less expensive than a            */
/* floating point division.                                               */
double inv_of_scale(double t){
    union dbl_int64 x;
                     /* 0xFEDCBA9876543210 */
    uint64_t inv_mask = 0x7FE0000000000000ull;
    x.d = t;
    x.i = inv_mask - x.i;
    return x.d;
}

double inv_of_scale_x86(double t){
    __m128i inv_mask = _mm_set1_epi64x(0x7FE0000000000000ull);
    __m128d x        = _mm_set_sd(t);
    __m128i x_i      = _mm_sub_epi64(inv_mask, _mm_castpd_si128(x));
    return _mm_cvtsd_f64(_mm_castsi128_pd(x_i));
}


int main(){
    int n = 14;
    int i;
    /* Several example values, 4.94e-324 is the smallest subnormal */
    double y[14] = { 4.94e-324, 1.1e-320,  1.1e-300,  1.1e-5,  0.7,  1.7,  123.1, 1.1e300,  
                     1.79e308, -1.1e-320,    -0.7, -1.7, -123.1,  -1.1e307};
    double z, s, u;

    printf("Portable code:\n");
    printf("             x       pow_of_2        inverse       pow2*inv      x*inverse \n");
    for (i = 0; i < n; i++){  
        z = y[i];
        s = get_scale(z);
        u = inv_of_scale(s);
        printf("%14e %14e %14e %14e %14e\n", z, s, u, s*u, z*u);
    }

    printf("\nx86 specific SSE code:\n");
    printf("             x       pow_of_2        inverse       pow2*inv      x*inverse \n");
    for (i = 0; i < n; i++){  
        z = y[i];
        s = get_scale_x86(z);
        u = inv_of_scale_x86(s);
        printf("%14e %14e %14e %14e %14e\n", z, s, u, s*u, z*u);
    }

    return 0;
}
Run Code Online (Sandbox Code Playgroud)

输出看起来很好:

Portable code:
             x       pow_of_2        inverse       pow2*inv      x*inverse 
 4.940656e-324  2.225074e-308  4.494233e+307   1.000000e+00   2.220446e-16
 1.099790e-320  2.225074e-308  4.494233e+307   1.000000e+00   4.942713e-13
 1.100000e-300  7.466109e-301  1.339386e+300   1.000000e+00   1.473324e+00
  1.100000e-05   7.629395e-06   1.310720e+05   1.000000e+00   1.441792e+00
  7.000000e-01   5.000000e-01   2.000000e+00   1.000000e+00   1.400000e+00
  1.700000e+00   1.000000e+00   1.000000e+00   1.000000e+00   1.700000e+00
  1.231000e+02   6.400000e+01   1.562500e-02   1.000000e+00   1.923437e+00
 1.100000e+300  6.696929e+299  1.493222e-300   1.000000e+00   1.642544e+00
 1.790000e+308  4.494233e+307  2.225074e-308   1.000000e+00   3.982882e+00
-1.099790e-320  2.225074e-308  4.494233e+307   1.000000e+00  -4.942713e-13
 -7.000000e-01   5.000000e-01   2.000000e+00   1.000000e+00  -1.400000e+00
 -1.700000e+00   1.000000e+00   1.000000e+00   1.000000e+00  -1.700000e+00
 -1.231000e+02   6.400000e+01   1.562500e-02   1.000000e+00  -1.923437e+00
-1.100000e+307  5.617791e+306  1.780059e-307   1.000000e+00  -1.958065e+00

x86 specific SSE code:
             x       pow_of_2        inverse       pow2*inv      x*inverse 
 4.940656e-324  2.225074e-308  4.494233e+307   1.000000e+00   2.220446e-16
 1.099790e-320  2.225074e-308  4.494233e+307   1.000000e+00   4.942713e-13
 1.100000e-300  7.466109e-301  1.339386e+300   1.000000e+00   1.473324e+00
  1.100000e-05   7.629395e-06   1.310720e+05   1.000000e+00   1.441792e+00
  7.000000e-01   5.000000e-01   2.000000e+00   1.000000e+00   1.400000e+00
  1.700000e+00   1.000000e+00   1.000000e+00   1.000000e+00   1.700000e+00
  1.231000e+02   6.400000e+01   1.562500e-02   1.000000e+00   1.923437e+00
 1.100000e+300  6.696929e+299  1.493222e-300   1.000000e+00   1.642544e+00
 1.790000e+308  4.494233e+307  2.225074e-308   1.000000e+00   3.982882e+00
-1.099790e-320  2.225074e-308  4.494233e+307   1.000000e+00  -4.942713e-13
 -7.000000e-01   5.000000e-01   2.000000e+00   1.000000e+00  -1.400000e+00
 -1.700000e+00   1.000000e+00   1.000000e+00   1.000000e+00  -1.700000e+00
 -1.231000e+02   6.400000e+01   1.562500e-02   1.000000e+00  -1.923437e+00
-1.100000e+307  5.617791e+306  1.780059e-307   1.000000e+00  -1.958065e+00
Run Code Online (Sandbox Code Playgroud)

矢量

函数get_scale应该使用支持自动向量化的编译器进行向量化.下面的代码片段与clang很好地矢量化(不需要编写SSE/AVX内在函数代码).

/* Test how well get_scale vectorizes: */
void get_scale_vec(double * __restrict__ t, double * __restrict__ x){
    int n = 1024;
    int i;
    for (i = 0; i < n; i++){
        x[i] = get_scale(t[i]);
    }
}
Run Code Online (Sandbox Code Playgroud)

不幸的是,gcc找不到vmaxpdvminpd说明.


gez*_*eza 3

根据 wim 的回答,这是另一种解决方案,它可以更快,因为它少了一条指令。输出有点不同,但仍然满足要求。

这个想法是使用位运算来修复边界情况:将 a01放入指数的 lsb,无论其值是多少。所以,指数:

  • 0 变为 1(-1023 变为 -1022)
  • 2046 变为 2045(1023 变为 1022)
  • 其他指数也进行了修改,但只是稍微修改:与 wim 的解决方案相比,该数字可能会变大两倍(当指数 lsb 从 变为 时0001,或减半(当 10->01 时)或 1/4(当 11->01 时)

所以,这个修改后的例程是有效的(而且我认为只用2 个快速 asm 指令就可以解决这个问题,这是非常酷的):

#include<stdio.h>
#include<stdint.h>
#include<immintrin.h>
/* gcc -Wall -m64 -O3 -march=sandybridge dbl_scale.c */

union dbl_int64{
    double d;
    uint64_t i;
};

double get_scale(double t){
    union dbl_int64 x;
    uint64_t and_i;
    uint64_t or_i;
         /* 0xFEDCBA9876543210 */
    and_i = 0x7FD0000000000000ull;
    or_i =  0x0010000000000000ull;
    x.d = t;
    x.i = (x.i & and_i)|or_i;                     /* Set fraction bits to zero, take absolute value */
    return x.d;
}

double get_scale_x86(double t){
    __m128d x = _mm_set_sd(t);
    __m128d x_and = _mm_castsi128_pd(_mm_set1_epi64x(0x7FD0000000000000ull));
    __m128d x_or  = _mm_castsi128_pd(_mm_set1_epi64x(0x0010000000000000ull));
            x     = _mm_and_pd(x, x_and);
            x     = _mm_or_pd(x, x_or);
    return _mm_cvtsd_f64(x);
}

/* Compute the inverse 1/t of a double t with all zero fraction bits     */
/* and exponent between the limits of function get_scale                 */
/* A single integer subtraction is much less expensive than a            */
/* floating point division.                                               */
double inv_of_scale(double t){
    union dbl_int64 x;
                     /* 0xFEDCBA9876543210 */
    uint64_t inv_mask = 0x7FE0000000000000ull;
    x.d = t;
    x.i = inv_mask - x.i;
    return x.d;
}

double inv_of_scale_x86(double t){
    __m128i inv_mask = _mm_set1_epi64x(0x7FE0000000000000ull);
    __m128d x        = _mm_set_sd(t);
    __m128i x_i      = _mm_sub_epi64(inv_mask, _mm_castpd_si128(x));
    return _mm_cvtsd_f64(_mm_castsi128_pd(x_i));
}


int main(){
    int n = 14;
    int i;
    /* Several example values, 4.94e-324 is the smallest subnormal */
    double y[14] = { 4.94e-324, 1.1e-320,  1.1e-300,  1.1e-5,  0.7,  1.7,  123.1, 1.1e300,  
                     1.79e308, -1.1e-320,    -0.7, -1.7, -123.1,  -1.1e307};
    double z, s, u;

    printf("Portable code:\n");
    printf("             x       pow_of_2        inverse       pow2*inv      x*inverse \n");
    for (i = 0; i < n; i++){  
        z = y[i];
        s = get_scale(z);
        u = inv_of_scale(s);
        printf("%14e %14e %14e %14e %14e\n", z, s, u, s*u, z*u);
    }

    printf("\nx86 specific SSE code:\n");
    printf("             x       pow_of_2        inverse       pow2*inv      x*inverse \n");
    for (i = 0; i < n; i++){  
        z = y[i];
        s = get_scale_x86(z);
        u = inv_of_scale_x86(s);
        printf("%14e %14e %14e %14e %14e\n", z, s, u, s*u, z*u);
    }

    return 0;
}
Run Code Online (Sandbox Code Playgroud)


归档时间:

查看次数:

310 次

最近记录:

6 年,9 月 前