Mat*_*jag 3 x86 assembly simd avx
在我的程序中,我有一个很大的32位整数数组.我必须对它进行以下操作:
sum = array[i] + array[i+1] + array[i+2]
array[i] = sum
array[i+1] = sum
array[i+2] = sum
i+=3
Run Code Online (Sandbox Code Playgroud)
或者,正如我在汇编中写的那样:
loop: ;R12 - address of the array, R11 - last element, R10 - iterator
mov eax, [R12 + R10]
add eax, [R12 + R10 + 4]
add eax, [R12 + R10 + 8]
mov [R12 + R10], eax
mov [R12 + R10 + 4], eax
mov [R12 + R10 + 8], eax
mov rax, 0
mov rdx, 0
add R10, 12
cmp R10, R11
jb loop
Run Code Online (Sandbox Code Playgroud)
是否可以使用向量指令来做到这一点?如果是这样,怎么样?
编译器可以为您进行矢量化,但使用内在函数进行矢量化可能会导致更高效的代码.sum3neighb下面的函数对具有12个整数元素的数组的3个相邻元素求和.它使用重叠载荷来获取正确位置的数据,而不是使用许多shuffle.
/* gcc -O3 -Wall -march=sandybridge -m64 neighb3.c */
#include <stdio.h>
#include <immintrin.h>
inline __m128i _mm_shufps_epi32(__m128i a, __m128i b,int imm){
return _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a),_mm_castsi128_ps(b),imm));
}
/* For an integer array of 12 elements, sum every 3 neighbouring elements */
void sum3neighb(int * a){
__m128i a_3210 = _mm_loadu_si128((__m128i*)&a[0]);
__m128i a_9876 = _mm_loadu_si128((__m128i*)&a[6]);
__m128i a_9630 = _mm_shufps_epi32(a_3210, a_9876, 0b11001100);
__m128i a_4321 = _mm_loadu_si128((__m128i*)&a[1]);
__m128i a_A987 = _mm_loadu_si128((__m128i*)&a[7]);
__m128i a_A741 = _mm_shufps_epi32(a_4321, a_A987, 0b11001100);
__m128i a_5432 = _mm_loadu_si128((__m128i*)&a[2]);
__m128i a_BA98 = _mm_loadu_si128((__m128i*)&a[8]);
__m128i a_B852 = _mm_shufps_epi32(a_5432, a_BA98, 0b11001100);
__m128i sum = _mm_add_epi32(a_9630, a_A741);
sum = _mm_add_epi32(sum, a_B852); /* B+A+9, 8+7+6, 5+4+3, 2+1+0 */
__m128i sum_3210 = _mm_shuffle_epi32(sum, 0b01000000);
__m128i sum_7654 = _mm_shuffle_epi32(sum, 0b10100101);
__m128i sum_BA98 = _mm_shuffle_epi32(sum, 0b11111110);
_mm_storeu_si128((__m128i*)&a[0], sum_3210);
_mm_storeu_si128((__m128i*)&a[4], sum_7654);
_mm_storeu_si128((__m128i*)&a[8], sum_BA98);
}
int main(){
int i;
int a[24];
for (i = 0; i < 24; i++) a[i] = i + 4; /* example input */
for (i = 0; i < 24; i++){ printf("%3i ",a[i]);}
printf("\n");
for (i = 0; i < 24; i = i + 12){
sum3neighb(&a[i]);
}
for (i = 0; i < 24; i++){ printf("%3i ",a[i]);}
printf("\n");
return 0;
}
Run Code Online (Sandbox Code Playgroud)
这将编译为以下程序集(使用gcc 8.2):
sum3neighb:
vmovups xmm4, XMMWORD PTR [rdi+4]
vshufps xmm2, xmm4, XMMWORD PTR [rdi+28], 204
vmovups xmm3, XMMWORD PTR [rdi]
vshufps xmm0, xmm3, XMMWORD PTR [rdi+24], 204
vpaddd xmm0, xmm0, xmm2
vmovups xmm5, XMMWORD PTR [rdi+8]
vshufps xmm1, xmm5, XMMWORD PTR [rdi+32], 204
vpaddd xmm0, xmm0, xmm1
vpshufd xmm2, xmm0, 64
vpshufd xmm1, xmm0, 165
vmovups XMMWORD PTR [rdi], xmm2
vpshufd xmm0, xmm0, 254
vmovups XMMWORD PTR [rdi+16], xmm1
vmovups XMMWORD PTR [rdi+32], xmm0
ret
Run Code Online (Sandbox Code Playgroud)
示例程序的输出是:(输入第一行,输出第二行,截断行.)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
15 15 15 24 24 24 33 33 33 42 42 42 51 51 51 60 ...
Run Code Online (Sandbox Code Playgroud)
clang不接受这个_mm_shufps_epi32功能,参见Peter的评论.有两种选择:模板功能(参见chtz的评论,Godbolt链接)
template<int imm>
inline __m128i _mm_shufps_epi32(__m128i a, __m128i b){
return _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a),_mm_castsi128_ps(b),imm));
}
Run Code Online (Sandbox Code Playgroud)
或宏:
#define _mm_shufps_epi32(a,b,i) _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a),_mm_castsi128_ps(b),i))
Run Code Online (Sandbox Code Playgroud)
在较新的英特尔架构(自Haswell)以来,整数向量加法指令比随机指令更快,请参阅 Agner Fog的指令表.在这种情况下,以下代码可能稍微更有效.它需要额外增加2个,但也减少2次:
void sum3neighb_v3(int * a){
__m128i a_3210 = _mm_loadu_si128((__m128i*)&a[0]);
__m128i a_4321 = _mm_loadu_si128((__m128i*)&a[1]);
__m128i a_5432 = _mm_loadu_si128((__m128i*)&a[2]);
__m128i sum53_20 = _mm_add_epi32(a_3210, a_5432);
__m128i sum543_210 = _mm_add_epi32(sum53_20, a_4321);
__m128i a_9876 = _mm_loadu_si128((__m128i*)&a[6]);
__m128i a_A987 = _mm_loadu_si128((__m128i*)&a[7]);
__m128i a_BA98 = _mm_loadu_si128((__m128i*)&a[8]);
__m128i sumB9_86 = _mm_add_epi32(a_9876, a_BA98);
__m128i sumBA9_876 = _mm_add_epi32(sumB9_86, a_A987
);
__m128i sum = _mm_shufps_epi32(sum543_210, sumBA9_876, 0b11001100);
__m128i sum_3210 = _mm_shuffle_epi32(sum, 0b01000000);
__m128i sum_7654 = _mm_shuffle_epi32(sum, 0b10100101);
__m128i sum_BA98 = _mm_shuffle_epi32(sum, 0b11111110);
_mm_storeu_si128((__m128i*)&a[0], sum_3210);
_mm_storeu_si128((__m128i*)&a[4], sum_7654);
_mm_storeu_si128((__m128i*)&a[8], sum_BA98);
}
Run Code Online (Sandbox Code Playgroud)
AVX2版本
AVX2版本,见下面的代码,使用了车道交叉shuffle,因此不太适合AMD处理器,请参阅chtz的答案.
void sum3neighb_avx2(int * a){
__m256i a_0 = _mm256_loadu_si256((__m256i*)&a[0]);
__m256i a_1 = _mm256_loadu_si256((__m256i*)&a[1]);
__m256i a_2 = _mm256_loadu_si256((__m256i*)&a[2]);
__m256i a_8 = _mm256_loadu_si256((__m256i*)&a[8]);
__m256i a_9 = _mm256_loadu_si256((__m256i*)&a[9]);
__m256i a_10 = _mm256_loadu_si256((__m256i*)&a[10]);
__m256i a_16 = _mm256_loadu_si256((__m256i*)&a[16]);
__m256i a_17 = _mm256_loadu_si256((__m256i*)&a[17]);
__m256i a_18 = _mm256_loadu_si256((__m256i*)&a[18]);
__m256i sum_0 = _mm256_add_epi32(_mm256_add_epi32(a_0, a_1), a_2);
__m256i sum_8 = _mm256_add_epi32(_mm256_add_epi32(a_8, a_9), a_10);
__m256i sum_16 = _mm256_add_epi32(_mm256_add_epi32(a_16, a_17), a_18);
__m256i sum_8_0 = _mm256_blend_epi32(sum_0, sum_8, 0b10010010);
__m256i sum = _mm256_blend_epi32(sum_8_0, sum_16, 0b00100100);
__m256i sum_7_0 = _mm256_permutevar8x32_epi32(sum, _mm256_set_epi32(6,6,3,3,3,0,0,0));
__m256i sum_15_8 = _mm256_permutevar8x32_epi32(sum, _mm256_set_epi32(7,4,4,4,1,1,1,6));
__m256i sum_23_16 = _mm256_permutevar8x32_epi32(sum, _mm256_set_epi32(5,5,5,2,2,2,7,7));
_mm256_storeu_si256((__m256i*)&a[0], sum_7_0 );
_mm256_storeu_si256((__m256i*)&a[8], sum_15_8 );
_mm256_storeu_si256((__m256i*)&a[16], sum_23_16);
}
Run Code Online (Sandbox Code Playgroud)