我在熊猫中有以下数据框
date prod hourly_bucket tank trans flag
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Non Preset Peak
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Non Preset Lean
Run Code Online (Sandbox Code Playgroud)
我想要的数据框将是在日级别和槽级别的聚合,然后计算几个小时内的Preset,Non-Preset交易次数Lean and Peak
date tank Lean_Non_Preset Lean_Preset Peak_Non_Preset Peak_Preset
01-01-2019 2 1 2 1 2
Run Code Online (Sandbox Code Playgroud)
我正在熊猫后面
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'], columns=['flag'],values=['trans'],aggfunc='count').reset_index()
Run Code Online (Sandbox Code Playgroud)
但这没有给我所需的解决方案
添加'trans'到参数columns,然后MultiIndex使用map和展开各列join:
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'],
columns=['flag','trans'],
aggfunc='size',
fill_value=0)
lean_peak_preset_cnt.columns = lean_peak_preset_cnt.columns.map('_'.join)
lean_peak_preset_cnt = lean_peak_preset_cnt.reset_index()
print (lean_peak_preset_cnt)
date tank Lean_No Preset Lean_Preset Peak_Non Preset Peak_Preset
0 01-01-2019 2 0 0 1 2
1 02-01-2019 2 1 2 0 0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2125 次 |
| 最近记录: |