sklearn 中的 Tfidfvectorizer - 如何获取矩阵

use*_*890 3 python tf-idf scikit-learn tfidfvectorizer

我想从 sklearn 的 Tfidfvectorizer 对象中获取矩阵。这是我的代码:

from sklearn.feature_extraction.text import TfidfVectorizer
text = ["The quick brown fox jumped over the lazy dog.",
        "The dog.",
        "The fox"]

vectorizer = TfidfVectorizer()
vectorizer.fit_transform(text)
Run Code Online (Sandbox Code Playgroud)

这是我尝试并返回错误的方法:

vectorizer.toarray()
Run Code Online (Sandbox Code Playgroud)
--------------------------------------------------------------------------- 
AttributeError                            Traceback (most recent call last) <ipython-input-117-76146e626284> in <module>()   
----> 1 vectorizer.toarray()

AttributeError: 'TfidfVectorizer' object has no attribute 'toarray'
Run Code Online (Sandbox Code Playgroud)

另一种尝试

vectorizer.todense()
Run Code Online (Sandbox Code Playgroud)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-118-6386ee121184> in <module>()
----> 1 vectorizer.todense()

AttributeError: 'TfidfVectorizer' object has no attribute 'todense'
Run Code Online (Sandbox Code Playgroud)

yat*_*atu 5

请注意,vectorizer.fit_transform返回您想要获取的术语-文档矩阵。因此,保存它返回的内容,并使用todense,因为它将采用稀疏格式:

返回:X:稀疏矩阵,[n_samples,n_features]。Tf-idf 加权文档术语矩阵。

a = vectorizer.fit_transform(text)
a.todense()

matrix([[0.36388646, 0.27674503, 0.27674503, 0.36388646, 0.36388646,
         0.36388646, 0.36388646, 0.42983441],
        [0.        , 0.78980693, 0.        , 0.        , 0.        ,
         0.        , 0.        , 0.61335554],
        [0.        , 0.        , 0.78980693, 0.        , 0.        ,
         0.        , 0.        , 0.61335554]])
Run Code Online (Sandbox Code Playgroud)