Tob*_*ann 5 python deep-learning conv-neural-network keras tensorflow
在默认Conv2D层中kernel_size=3,其中一个过滤器的切片权重可以这样命名:
A B C
D E F
G H I
Run Code Online (Sandbox Code Playgroud)
有了kernel_size=5这样的:
A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Run Code Online (Sandbox Code Playgroud)
现在我想构建(和训练/测试)一个基于卷积层的模型,内核如下:
A A B C C
A A B C C
D D E F F
G G H I I
G G H I I
Run Code Online (Sandbox Code Playgroud)
这样一个自定义层的实现会是什么样子?
也许像这样?
class CustomConv2D(Layer):
def __init__(self, filters, **kwargs):
self.filters = filters
self.kernel_size = (3, 3)
super(CustomConv2D, self).__init__(**kwargs)
def build(self, input_shape):
# only have a 3x3 kernel
shape = self.kernel_size + (input_shape[-1], self.filters)
self.kernel = self.add_weight(name='kernel', shape=shape,
initializer='glorot_uniform')
super(CustomConv2D, self).build(input_shape)
def call(self, x):
# duplicate rows 0 and 2
dup_rows = K.stack([self.kernel[0]]*2 + [self.kernel[1]] + [self.kernel[2]]*2, axis=0)
# duplicate cols 0 and 2
dup_cols = K.stack([dup_rows[:,0]]*2 + [dup_rows[:,1]] + [dup_rows[:,2]]*2, axis=1)
# having a 5x5 kernel now
return K.conv2d(x, dup_cols)
def compute_output_shape(self, input_shape):
return input_shape[:-1] + (self.filters,)
Run Code Online (Sandbox Code Playgroud)
诀窍是简单地在 3x3 内核中为每个过滤器存储 9 个权重(硬编码,您可能想要概括它),并复制第一行和最后一行和列,使其成为您想要的 5x5 内核。然后这个内核被传递到K.conv2d()就像原始 Conv2d 实现中一样。
我测试了它,它似乎有效。您可能需要添加其他参数,例如填充、偏差等。