Run*_*les 5 python colormap holoviews datashader
我正在尝试使用 Datashader 和 Holoviews 可视化分类空间数据,类似于https://anaconda.org/jbednar/census-hv-dask/notebook。但是,当我尝试为类别分配不同的颜色时,我总是得到相同的(大概是默认的)颜色(输出图像的示例。)
这是我在 Jupyter 笔记本中运行的代码。有人可以建议我如何使自定义颜色图发挥作用吗?或者至少运行代码来查看最终的颜色是否与图例匹配。谢谢你!
from sklearn.datasets.samples_generator import make_blobs
from matplotlib import pyplot
import pandas as pd
import holoviews as hv
import geoviews as gv
import datashader as ds
from cartopy import crs
from matplotlib.cm import get_cmap
from holoviews.operation.datashader import datashade, aggregate
hv.notebook_extension('bokeh', width=95)
# Generating blob data:
X, y = make_blobs(n_samples=5000000, centers=5, n_features=2)
df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))
# Plotting the blobs using datashader and holoviews:
%opts Overlay [width=800 height=455 xaxis=None yaxis=None show_grid=False]
%opts Shape (fill_color=None line_width=1.5) [apply_ranges=False]
%opts Points [apply_ranges=False] WMTS (alpha=0.5) NdOverlay [tools=['tap']]
color_key = {0:'red', 1:'blue', 2:'green', 3:'yellow', 4:'black'}
labels = {0:'red', 1:'blue', 2:'green', 3:'yellow', 4:'black'}
color_points = hv.NdOverlay({labels[k]: gv.Points([0,0], crs=crs.PlateCarree(),
label=labels[k])(style=dict(color=v))
for k, v in color_key.items()})
dataset = gv.Dataset(df, kdims=['x', 'y'], vdims=['label'])
shaded = datashade(hv.Points(dataset), cmap=color_key, aggregator=ds.count_cat('label'))
shaded * color_points
Run Code Online (Sandbox Code Playgroud)
该代码似乎无法运行(races 未定义,gv 未导入),但无论如何,分类颜色是由参数决定的color_key,而不是cmap,因此您需要更改cmap=color_key为color_key=color_key。
| 归档时间: |
|
| 查看次数: |
2350 次 |
| 最近记录: |