断言错误:未在启用 CUDA 的情况下编译 Torch

blu*_*sky 8 pytorch

来自https://pytorch.org/

在 MacOS 上安装 pytorch 说明如下:

conda install pytorch torchvision -c pytorch
# MacOS Binaries dont support CUDA, install from source if CUDA is needed
Run Code Online (Sandbox Code Playgroud)

为什么要在不启用 cuda 的情况下安装 pytorch?

我问的原因是我收到错误:

-------------------------------------------------- ------------------------- AssertionError Traceback (most recent call last) in () 78 #predicted = output.data.max(1)[1 ] 79 ---> 80 输出 = 模型(torch.tensor([[1,1]]).float().cuda()) 81 预测 = output.data.max(1)[1] 82

~/anaconda3/lib/python3.6/site-packages/torch/cuda/ init .py in _lazy_init() 159 raise RuntimeError( 160“无法在分叉的子进程中重新初始化 CUDA。” + msg) --> 161 _check_driver(第 162 章

~/anaconda3/lib/python3.6/site-packages/torch/cuda/ init .py in _check_driver() 73 def _check_driver(): 74 if not hasattr(torch._C, '_cuda_isDriverSufficient'): ---> 75引发断言错误(“Torch 未在启用 CUDA 的情况下编译”)76 如果不是 torch._C._cuda_isDriverSufficient():77 如果 torch._C._cuda_getDriverVersion() == 0:

断言错误:未在启用 CUDA 的情况下编译 Torch

尝试执行代码时:

x = torch.tensor([[0,0] , [0,1] , [1,0]]).float()
print(x)

y = torch.tensor([0,1,1]).long()
print(y)

my_train = data_utils.TensorDataset(x, y)
my_train_loader = data_utils.DataLoader(my_train, batch_size=2, shuffle=True)

# Device configuration
device = 'cpu'
print(device)

# Hyper-parameters 
input_size = 2
hidden_size = 100
num_classes = 2


learning_rate = 0.001

train_dataset = my_train

train_loader = my_train_loader

pred = []


for i in range(0 , model_iters) : 
    # Fully connected neural network with one hidden layer
    class NeuralNet(nn.Module):
        def __init__(self, input_size, hidden_size, num_classes):
            super(NeuralNet, self).__init__()
            self.fc1 = nn.Linear(input_size, hidden_size) 
            self.relu = nn.ReLU()
            self.fc2 = nn.Linear(hidden_size, num_classes)  

        def forward(self, x):
            out = self.fc1(x)
            out = self.relu(out)
            out = self.fc2(out)
            return out

    model = NeuralNet(input_size, hidden_size, num_classes).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

    # Train the model
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):  
            # Move tensors to the configured device
            images = images.reshape(-1, 2).to(device)
            labels = labels.to(device)

            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)

            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
{:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    output = model(torch.tensor([[1,1]]).float().cuda())
Run Code Online (Sandbox Code Playgroud)

要修复此错误,我需要从已安装 cuda 的源代码安装 pytorch 吗?

Bra*_*Dre 8

总结和扩展评论:

  • CUDA 是 Nvidia 专有(显然未经许可)技术,允许在 GPU 处理器上进行通用计算。
  • 很少有 Macbook Pro 拥有支持 Nvidia CUDA 的 GPU。看看这里,看看你是否MBP有Nvidia的GPU。然后,查看这里的表格,看看该 GPU 是否支持 CUDA
  • iMac、iMac Pro 和 Mac Pro 的故事相同。
  • 因此,在 MacOS 上默认安装 PyTorch 时不支持 CUDA

这个 PyTorch github 问题提到很少有 Mac 有 Nvidia 处理器:https : //github.com/pytorch/pytorch/issues/30664

如果您的 Mac 确实有支持 CUDA 的 GPU,那么要在 MacOS 上使用 CUDA 命令,您需要使用正确的命令行选项从源代码重新编译 pytorch。

  • _您需要使用正确的命令行选项从源代码重新编译 pytorch。_这是什么意思? (6认同)