sek*_*i92 2 python machine-learning neural-network conv-neural-network keras
我是 Keras 新手,我正在尝试获取 Keras 中的权重。我知道如何在 Python 中的 Tensorflow 中执行此操作。
代码:
data = np.array(attributes, 'int64')
target = np.array(labels, 'int64')
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=2, dtype=tf.float32)]
learningRate = 0.1
epoch = 10000
# https://www.tensorflow.org/api_docs/python/tf/metrics
validation_metrics = {
"accuracy": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_accuracy ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"precision": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_precision ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"recall": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_recall ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"mean_absolute_error": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_mean_absolute_error ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"false_negatives": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_false_negatives ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"false_positives": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_false_positives ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES),
"true_positives": tf.contrib.learn.MetricSpec(metric_fn = tf.contrib.metrics.streaming_true_positives ,
prediction_key = tf.contrib.learn.PredictionKey.CLASSES)
}
# validation monitor
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(data, target, every_n_steps=500,
metrics = validation_metrics)
classifier = tf.contrib.learn.DNNClassifier(
feature_columns = feature_columns,
hidden_units = [3],
activation_fn = tf.nn.sigmoid,
optimizer = tf.train.GradientDescentOptimizer(learningRate),
model_dir = "model",
config = tf.contrib.learn.RunConfig(save_checkpoints_secs = 1)
)
classifier.fit(data, target, steps = epoch,
monitors = [validation_monitor])
# print('Params:', classifier.get_variable_names())
'''
Params: ['dnn/binary_logistic_head/dnn/learning_rate', 'dnn/hiddenlayer_0/biases', 'dnn/hiddenlayer_0/weights', 'dnn/logits/biases', 'dnn/logits/weights', 'global_step']
'''
print('total steps:', classifier.get_variable_value("global_step"))
print('weight from input layer to hidden layer: ', classifier.get_variable_value("dnn/hiddenlayer_0/weights"))
print('weight from hidden layer to output layer: ', classifier.get_variable_value("dnn/logits/weights"))
Run Code Online (Sandbox Code Playgroud)
有什么方法可以像 Tensorflow 一样在 Keras 中获取权重:
这是我在 Keras 中的模型:
model = Sequential()
model.add(Flatten(input_shape=(224,224,3)))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
Run Code Online (Sandbox Code Playgroud)
get_weights
您可以使用和方法访问和设置模型各层的权重或参数set_weights
。来自Keras 文档:
layer.get_weights()
:以 Numpy 数组列表的形式返回层的权重。layer.set_weights(weights)
:从 Numpy 数组列表中设置层的权重(形状与 的输出相同get_weights
)。
每个 Keras 模型都有一个layers
属性,它是模型中所有层的列表。例如,在您提供的示例模型中,您可以Dense
通过运行以下命令获取第一层的权重:
model.layers[1].get_weights()
Run Code Online (Sandbox Code Playgroud)
它将返回两个 numpy 数组的列表:第一个数组是密集层的内核参数,第二个数组是偏差参数。
归档时间: |
|
查看次数: |
5458 次 |
最近记录: |