Kha*_*dra 5 python artificial-intelligence neural-network pytorch
如何扁平化内部的输入 nn.Sequential
Model = nn.Sequential(x.view(x.shape[0],-1),
nn.Linear(784,256),
nn.ReLU(),
nn.Linear(256,128),
nn.ReLU(),
nn.Linear(128,64),
nn.ReLU(),
nn.Linear(64,10),
nn.LogSoftmax(dim=1))
Run Code Online (Sandbox Code Playgroud)
您可以如下创建一个新的模块/类,并像使用其他模块一样依次使用它(调用Flatten())。
class Flatten(torch.nn.Module):
def forward(self, x):
batch_size = x.shape[0]
return x.view(batch_size, -1)
Run Code Online (Sandbox Code Playgroud)
参考:https : //discuss.pytorch.org/t/flatten-layer-of-pytorch-build-by-sequential-container/5983
作为被定义的flatten方法
torch.flatten(input, start_dim=0, end_dim=-1) ? Tensor
Run Code Online (Sandbox Code Playgroud)
速度与 相当view(),但reshape速度更快。
import torch.nn as nn
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
flatten = Flatten()
t = torch.Tensor(3,2,2).random_(0, 10)
print(t, t.shape)
#https://pytorch.org/docs/master/torch.html#torch.flatten
f = torch.flatten(t, start_dim=1, end_dim=-1)
print(f, f.shape)
#https://pytorch.org/docs/master/torch.html#torch.view
f = t.view(t.size(0), -1)
print(f, f.shape)
#https://pytorch.org/docs/master/torch.html#torch.reshape
f = t.reshape(t.size(0), -1)
print(f, f.shape)
Run Code Online (Sandbox Code Playgroud)
速度检查
# flatten 3.49 µs ± 146 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# view 3.23 µs ± 228 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# reshape 3.04 µs ± 93 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Run Code Online (Sandbox Code Playgroud)
如果我们使用上面的类
flatten = Flatten()
t = torch.Tensor(3,2,2).random_(0, 10)
%timeit f=flatten(t)
5.16 µs ± 122 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Run Code Online (Sandbox Code Playgroud)
这个结果表明创建一个类会是较慢的方法。这就是为什么将张量向前展平更快的原因。我认为这是他们没有晋升的主要原因nn.Flatten。
所以我的建议是使用内线来提高速度。像这样的东西:
out = inp.reshape(inp.size(0), -1)
Run Code Online (Sandbox Code Playgroud)
您可以按如下方式修改您的代码,
Model = nn.Sequential(nn.Flatten(0, -1),
nn.Linear(784,256),
nn.ReLU(),
nn.Linear(256,128),
nn.ReLU(),
nn.Linear(128,64),
nn.ReLU(),
nn.Linear(64,10),
nn.LogSoftmax(dim=1))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2470 次 |
| 最近记录: |