wat*_*wer 7 python r pandas data.table
这个问题是关于提升熊猫在堆垛和卸垛作业中的表现.
问题是我有一个大型数据帧(~2GB).我按照这个博客将其压缩成~150MB成功.但是,我的堆栈和取消堆栈操作需要花费大量时间,因此我必须杀死内核并重新启动所有内容.
我也使用了R的data.table包,它只是苍蝇,这意味着它在<1秒内完成操作.
我在SO上研究了这个.看来,有些人指出,map-reduce在数据帧拆散性能-大熊猫线程,但我不知道这件事的原因有两个:
stack并且unstack在未压缩的运行中很好pandas,但由于内存问题,我无法在原始数据集上执行此操作.data.table很容易(<1秒)从长格式转换为宽格式.为了SO的代表目的,我设法削减了一个小饲料(5MB).该Feed已上传至http://www.filedropper.com/ddataredact.此文件应该能够重现该问题.
这是我的pandas代码:
import pandas as pd
#Added code to generate test data
data = {'ANDroid_Margin':{'type':'float','len':13347},
'Name':{'type':'cat','len':71869},
'Geo1':{'type':'cat','len':4},
'Geo2':{'type':'cat','len':31},
'Model':{'type':'cat','len':2}}
ddata_i = pd.DataFrame()
len_data =114348
#categorical
for colk,colv in data.items():
print("Processing column:",colk)
#Is the data type numeric?
if data[colk]['type']=='cat':
chars = string.digits + string.ascii_lowercase
replacement_value = [
"".join(
[random.choice(chars) for i in range(5)]
) for j in range(data[colk]['len'])]
else:
replacement_value = np.random.uniform(
low=0.0, high=20.0, size=(data[colk]['len'],))
ddata_i[colk] = np.random.choice(
replacement_value,size=len_data,replace = True)
#Unstack and Stack now. This will show the result quickly
ddata_i.groupby(["Name","Geo1","Geo2","Model"]).\
sum().\
unstack().\
stack(dropna=False).\
reset_index()
#Compress our data
ddata = ddata_i.copy()
df_obj = ddata.select_dtypes(include=['object']).copy()
for col in df_obj:
df_obj.loc[:, col] = df_obj[col].astype('category')
ddata[df_obj.columns] = df_obj
df_obj = ddata.select_dtypes(include=['float']).copy()
for col in df_obj:
df_obj.loc[:, col] = df_obj[col].astype('float')
ddata[df_obj.columns] = df_obj
#Let's quickly check whether compressed file is same as original file
assert ddata.shape==ddata_i.shape, "Output seems wrong"
assert ddata_i.ANDroid_Margin.sum()==ddata.ANDroid_Margin.sum(),"Sum isn't right"
for col in ["ANDroid_Margin","Name","Geo1","Geo2"]:
assert sorted(list(ddata_i[col].unique()))==sorted(list(ddata[col].unique()))
#This will run forever
ddata.groupby(["Name","Geo1","Geo2","Model"]).\
sum().\
unstack().\
stack(dropna=False).\
reset_index()
Run Code Online (Sandbox Code Playgroud)
您将注意到堆叠和取消堆栈操作ddata_i将快速运行,但不会在压缩时运行ddata.为什么是这样?
另外,我注意到,如果我要么压缩object或float,然后stack()并unstack()会很快运行.只有当我同时做这两件事时,问题仍然存在.
有人可以帮我理解我错过的东西吗?我怎样才能解决pandas上面的问题?我觉得有这么大的性能问题,我怎样才能编写生产就绪代码pandas?我很感激你的想法.
最后,这是R的data.table代码.我不得不说这data.table不仅快,而且我不必经历压缩和解压缩.
df <- data.table::fread("ddata_redact.csv",
stringsAsFactors=FALSE,
data.table = TRUE,
header = TRUE)
df1=data.table::dcast(df, Name + Geo1 + Geo2 ~ Model,
value.var = "ANDroid_Margin",
fun.aggregate = sum)
Run Code Online (Sandbox Code Playgroud)
有人可以帮我理解我错过的东西吗?我怎样才能解决pandas上面的问题?我觉得有这么大的性能问题,我怎样才能编写生产就绪代码pandas?我很感激你的想法.
Python的系统信息:
sys.version_info
> sys.version_info(major=3, minor=6, micro=7, releaselevel='final', serial=0)
Run Code Online (Sandbox Code Playgroud)
熊猫版
pd.__version__
> '0.23.4'
Run Code Online (Sandbox Code Playgroud)
data.table
1.11.8
Run Code Online (Sandbox Code Playgroud)
我找到了答案。问题是我们需要添加observed = True以防止pandas计算笛卡尔积。
压缩后,我必须运行这个......
ddata.groupby(["Name","Geo1","Geo2","Model",observed = True]).\
sum().\
unstack().\
stack(dropna=False).\
reset_index()
Run Code Online (Sandbox Code Playgroud)