Epi*_*est 5 python python-3.x pandas
我正在尝试基于公共列合并多个DataFrame.这将在循环中完成,原始DataFrame可能没有所有列,因此需要外部合并.但是,当我在几个不同的DataFrames列上执行此操作时,使用后缀_x和_y复制.我正在寻找一个填充数据的DataFrame,并且只有在以前不存在的情况下才添加列.
df1=pd.DataFrame({'Company Name':['A','B','C','D'],'Data1':[1,34,23,66],'Data2':[13,54,5354,443]})
Company Name Data1 Data2
0 A 1 13
1 B 34 54
2 C 23 5354
3 D 66 443
Run Code Online (Sandbox Code Playgroud)
第二个DataFrame,包含一些公司的附加信息:
pd.DataFrame({'Company Name':['A','B'],'Address': ['str1', 'str2'], 'Phone': ['str1a', 'str2a']})
Company Name Address Phone
0 A str1 str1a
1 B str2 str2a
Run Code Online (Sandbox Code Playgroud)
如果我想组合这两个,它将使用on = Column成功合并为一个:
df1=pd.merge(df1,df2, on='Company Name', how='outer')
Company Name Data1 Data2 Address Phone
0 A 1 13 str1 str1a
1 B 34 54 str2 str2a
2 C 23 5354 NaN NaN
3 D 66 443 NaN NaN
Run Code Online (Sandbox Code Playgroud)
但是,如果我在循环中再次执行相同的命令,或者如果我要将其他DataFrame与其他公司信息合并,我最终会获得类似于以下内容的重复列:
df1=pd.merge(df1,pd.DataFrame({'Company Name':['C'],'Address':['str3'],'Phone':['str3a']}), on='Company Name', how='outer')
Company Name Data1 Data2 Address_x Phone_x Address_y Phone_y
0 A 1 13 str1 str1a NaN NaN
1 B 34 54 str2 str2a NaN NaN
2 C 23 5354 NaN NaN str3 str3a
3 D 66 443 NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
当我真正想要的是一个具有相同列的DataFrame时,只需填充任何缺失的数据.
Company Name Data1 Data2 Address Phone
0 A 1 13 str1 str1a
1 B 34 54 str2 str2a
2 C 23 5354 str3 str3a
3 D 66 443 NaN NaN
Run Code Online (Sandbox Code Playgroud)
提前致谢.我已经回顾了之前在重复列上提出的问题,以及对Pandas文档的审核以及任何进展.
当您在循环中寻找一次合并一个数据框时,可以采用以下一种方法:新数据框是否有新公司名称、是否有新列:
df1 = pd.DataFrame({'Company Name':['A','B','C','D'],
'Data1':[1,34,23,66],'Data2':[13,54,5354,443]})
list_dfo = [pd.DataFrame({'Company Name':['A','B'],
'Address': ['str1', 'str2'], 'Phone': ['str1a', 'str2a']}),
pd.DataFrame({'Company Name':['C'],'Address':['str3'],'Phone':['str3a']})]
for df_other in list_dfo:
df1 = pd.merge(df1,df_other,how='outer').groupby('Company Name').first().reset_index()
# and other code
Run Code Online (Sandbox Code Playgroud)
在这个例子的最后:
print(df1)
Company Name Data1 Data2 Address Phone
0 A 1.0 13.0 str1 str1a
1 B 34.0 54.0 str2 str2a
2 C 23.0 5354.0 str3 str3a
3 D 66.0 443.0 NaN NaN
Run Code Online (Sandbox Code Playgroud)
first您可以使用代替last,这将保留最后一个有效值,而不是每组每列中的第一个有效值,这取决于您需要的数据、来自的数据df1或来自df_other可用的数据。在上面的示例中,它不会改变任何内容,但在以下情况下您将看到:
#company A has a new address
df4 = pd.DataFrame({'Company Name':['A'],'Address':['new_str1']})
#first keep the value from df1
print(pd.merge(df1,df4,how='outer').groupby('Company Name')
.first().reset_index())
Out[21]:
Company Name Data1 Data2 Address Phone
0 A 1.0 13.0 str1 str1a #address is str1 from df1
1 B 34.0 54.0 str2 str2a
2 C 23.0 5354.0 str3 str3a
3 D 66.0 443.0 NaN NaN
#while last keep the value from df4
print (pd.merge(df1,df4,how='outer').groupby('Company Name')
.last().reset_index())
Out[22]:
Company Name Data1 Data2 Address Phone
0 A 1.0 13.0 new_str1 str1a #address is new_str1 from df4
1 B 34.0 54.0 str2 str2a
2 C 23.0 5354.0 str3 str3a
3 D 66.0 443.0 NaN NaN
Run Code Online (Sandbox Code Playgroud)