Nor*_*ran 2 neural-network deep-learning conv-neural-network keras tensorflow
我通过 Keras 创建了一个用于图像识别的深度学习模型,并将模型权重保存为model.save_weights('weights.h5'). 另外,我加载了它并再次使用了重量。
我知道这model.save_weights()可以节省模型权重。我的问题是模型权重是多少?是过滤器的重量吗?
模型权重是模型的所有参数(包括可训练和不可训练的),这些参数又是模型各层中使用的所有参数。是的,对于卷积层,它既是过滤器权重又是偏差。
实际上,您可以看到每一层的它们:尝试model.layers[layer_index].get_weights()您将获得该层的权重。当您save_weights()实际调用时,它是get_weights()在文件中存储的每个层上调用的输出。
例如,对于卷积层,get_weights()方法将返回一个包含两个元素的列表,这些元素对应于过滤器权重和偏差。下面是一个例子:
model = Sequential()
model.add(Conv2D(5, (3,3), input_shape=(100, 100, 3)))
filters, biases = model.layers[0].get_weights()
>>> filters.shape
(3, 3, 3, 5) <--- 5 filters of shape (3, 3, 3)
>>> biases.shape
(5,) <--- one bias parameter for each filter
>>> filters[:, :, :, 0] # get the first filter's weights
array([[[-0.26788074, -0.20213448, 0.06233829],
[ 0.08651951, 0.21303588, 0.08127764],
[ 0.04672694, -0.24589485, -0.12873489]],
[[ 0.10841686, 0.24839908, -0.07466605],
[-0.26903206, -0.0341135 , 0.15083215],
[-0.07382561, -0.00576964, -0.25354072]],
[[-0.02937067, 0.22315139, -0.12964793],
[ 0.23371089, 0.19973844, -0.00728002],
[-0.2748396 , -0.02097657, 0.22772402]]], dtype=float32)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2152 次 |
| 最近记录: |