tor*_*eff 4 autoencoder pytorch
如何构建卷积自动编码器的解码器部分?假设我有这个
(input -> conv2d -> maxpool2d -> maxunpool2d -> convTranspose2d -> output):
# CIFAR images shape = 3 x 32 x 32
class ConvDAE(nn.Module):
def __init__(self):
super().__init__()
# input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, 3, stride=1, padding=1), # batch x 16 x 32 x 32
nn.ReLU(),
nn.BatchNorm2d(16),
nn.MaxPool2d(2, stride=2) # batch x 16 x 16 x 16
)
# input: batch x 16 x 16 x 16 -> output: batch x 3 x 32 x 32
self.decoder = nn.Sequential(
# this line does not work
# nn.MaxUnpool2d(2, stride=2, padding=0), # batch x 16 x 32 x 32
nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1), # batch x 16 x 32 x 32
nn.ReLU(),
nn.BatchNorm2d(16),
nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0), # batch x 3 x 32 x 32
nn.ReLU()
)
def forward(self, x):
print(x.size())
out = self.encoder(x)
print(out.size())
out = self.decoder(out)
print(out.size())
return out
Run Code Online (Sandbox Code Playgroud)
Pytorch 特定问题:为什么我不能在解码器部分使用 MaxUnpool2d 。这给了我以下错误:
TypeError: forward() missing 1 required positional argument: 'indices'
Run Code Online (Sandbox Code Playgroud)
And the conceptual question: Shouldn't we do in decoder inverse of whatever we did in encoder? I saw some implementations and it seems they only care about the dimensions of input and output of decoder. Here and here are some examples.
对于问题的火炬部分,unpool 模块将池模块返回的索引作为必需的位置参数,该索引将通过return_indices=True. 所以你可以做
class ConvDAE(nn.Module):
def __init__(self):
super().__init__()
# input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, 3, stride=1, padding=1), # batch x 16 x 32 x 32
nn.ReLU(),
nn.BatchNorm2d(16),
nn.MaxPool2d(2, stride=2, return_indices=True)
)
self.unpool = nn.MaxUnpool2d(2, stride=2, padding=0)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(16),
nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0),
nn.ReLU()
)
def forward(self, x):
print(x.size())
out, indices = self.encoder(x)
out = self.unpool(out, indices)
out = self.decoder(out)
print(out.size())
return out
Run Code Online (Sandbox Code Playgroud)
至于问题的一般部分,我认为最先进的技术不是使用对称解码器部分,因为已经表明,去卷积/转置卷积会产生棋盘效应,并且许多方法倾向于使用上采样模块。您将通过 PyTorch 渠道更快地找到更多信息。
| 归档时间: |
|
| 查看次数: |
8519 次 |
| 最近记录: |