Ev4*_*Ev4 4 python machine-learning neural-network keras tensorflow
我想创建一个网络,其中输入层中的节点仅连接到下一层中的某些节点。这是一个小例子:
到目前为止,我的解决方案是将i1
和之间的边的权重设置h1
为零,并且在每个优化步骤之后,我将权重乘以一个矩阵(我称之为矩阵掩码矩阵),其中每个条目都是 1,除了权重的条目之间的边缘i1
和h1
。(见下面的代码)
这种做法对吗?或者这对 GradientDescent 有影响吗?有没有另一种方法可以在 TensorFlow 中创建这种网络?
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import numpy as np
tf.enable_eager_execution()
model = tf.keras.Sequential([
tf.keras.layers.Dense(2, activation=tf.sigmoid, input_shape=(2,)), # input shape required
tf.keras.layers.Dense(2, activation=tf.sigmoid)
])
#set the weights
weights=[np.array([[0, 0.25],[0.2,0.3]]),np.array([0.35,0.35]),np.array([[0.4,0.5],[0.45, 0.55]]),np.array([0.6,0.6])]
model.set_weights(weights)
model.get_weights()
features = tf.convert_to_tensor([[0.05,0.10 ]])
labels = tf.convert_to_tensor([[0.01,0.99 ]])
mask =np.array([[0, 1],[1,1]])
#define the loss function
def loss(model, x, y):
y_ = model(x)
return tf.losses.mean_squared_error(labels=y, predictions=y_)
#define the gradient calculation
def grad(model, inputs, targets):
with tf.GradientTape() as tape:
loss_value = loss(model, inputs, targets)
return loss_value, tape.gradient(loss_value, model.trainable_variables)
#create optimizer an global Step
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
global_step = tf.train.get_or_create_global_step()
#optimization step
loss_value, grads = grad(model, features, labels)
optimizer.apply_gradients(zip(grads, model.variables),global_step)
#masking the optimized weights
weights=(model.get_weights())[0]
masked_weights=tf.multiply(weights,mask)
model.set_weights([masked_weights])
Run Code Online (Sandbox Code Playgroud)
tod*_*day 10
如果您正在为您提供的特定示例寻找解决方案,您可以简单地使用tf.keras
Functional API 并定义两个 Dense 层,其中一个连接到前一层中的两个神经元,另一个仅连接到一个神经元:
from tensorflow.keras.layer import Input, Lambda, Dense, concatenate
from tensorflow.keras.models import Model
inp = Input(shape=(2,))
inp2 = Lambda(lambda x: x[:,1:2])(inp) # get the second neuron
h1_out = Dense(1, activation='sigmoid')(inp2) # only connected to the second neuron
h2_out = Dense(1, activation='sigmoid')(inp) # connected to both neurons
h_out = concatenate([h1_out, h2_out])
out = Dense(2, activation='sigmoid')(h_out)
model = Model(inp, out)
# simply train it using `fit`
model.fit(...)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4598 次 |
最近记录: |