Cod*_*der 4 python list dataframe pandas
我这里有三个清单
[1,2,3,4,5]
[5,4,6,7,2]
[1,2,4,5,6,7,8,9,0]
我想要这种输出:
A B C
1 5 1
2 4 2
3 6 4
4 7 5
5 2 6
7
8
9
0
Run Code Online (Sandbox Code Playgroud)
我尝试了一种语法,但它给了我这个错误arrays must all be same length
,另一个错误是Length of values does not match length of index
有没有办法获得这种输出?
这不容易支持,但可以做到.DataFrame.from_dict
将与"索引"的东方.假设你的名单A
,B
以及C
:
pd.DataFrame([A, B, C]).T
0 1 2
0 1.0 5.0 1.0
1 2.0 4.0 2.0
2 3.0 6.0 4.0
3 4.0 7.0 5.0
4 5.0 2.0 6.0
5 NaN NaN 7.0
6 NaN NaN 8.0
7 NaN NaN 9.0
8 NaN NaN 0.0
Run Code Online (Sandbox Code Playgroud)
另一种选择是使用DataFrame.from_dict
:
pd.DataFrame.from_dict({'A' : A, 'B' : B, 'C' : C}, orient='index').T
A B C
0 1.0 5.0 1.0
1 2.0 4.0 2.0
2 3.0 6.0 4.0
3 4.0 7.0 5.0
4 5.0 2.0 6.0
5 NaN NaN 7.0
6 NaN NaN 8.0
7 NaN NaN 9.0
8 NaN NaN 0.0
Run Code Online (Sandbox Code Playgroud)
与zip_longest
和的第三个解决方案DataFrame.from_records
:
from itertools import zip_longest
pd.DataFrame.from_records(zip_longest(A, B, C), columns=['A', 'B', 'C'])
# pd.DataFrame.from_records(list(zip_longest(A, B, C)), columns=['A', 'B', 'C'])
A B C
0 1.0 5.0 1
1 2.0 4.0 2
2 3.0 6.0 4
3 4.0 7.0 5
4 5.0 2.0 6
5 NaN NaN 7
6 NaN NaN 8
7 NaN NaN 9
8 NaN NaN 0
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
112 次 |
最近记录: |